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Abstract: An equilibrium involves a balancing of forces. Just as one maintains upright posture in standing or
walking, many self-regulatory and interpersonal behaviors can be framed as a balancing act between an ever changing
environment and within-person processes. The emerging balance between person and environment, the equilibria, are
dynamic and adaptive in response to development and learning. A distinction is made between equilibrium achieved
solely due to a short timescale balancing of forces and a longer timescale preferred equilibrium which we define as a
state towards which the system slowly adapts. Together, these are developed into a framework that this article calls
Adaptive Equilibrium Regulation (ÆR), which separates a regulatory process into two timescales: a faster regulation
that automatically balances forces and a slower timescale adaptation process that reconfigures the fast regulation
so as to move the system towards its preferred equilibrium when an environmental force persists over the longer
timescale. This way of thinking leads to novel models for the interplay between multiple timescales of behavior,
learning, and development.
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Introduction

Many metaphors have been employed to translate psy-
chological, physiological, developmental, and medical the-
ories into physical terms in order to enhance intuitive
understanding. Momentum (Iso-Ahola & Mobily, 1980),
spring and mass systems (Turvey, 1990), pendulums
(Boker & Laurenceau, 2007; Reed, Barnard, & Butler,
in press), thermostats (Chow, Ram, Boker, Fujita, &
Clore, 2005), reservoirs (Deboeck & Bergeman, 2013) and
elasticity (Boker, Montpetit, Hunter, & Bergeman, 2010)
have been explored and sometimes empirically tested as
models for processes that evolve over short (i.e., seconds),
medium (i.e., days), or long (i.e., years) intervals of time.
The appeal of these metaphors is that they can literally
be embodied in order to provide a seed of understand-
ing. For instance, every time we walk, we swing our legs
and arms in ways that incorporate the actions of pendu-
lums connected with variably elastic springs. Decades of

self-locomotive experience allows us to deeply understand
how a pendulum or mass and spring system will behave
without the need to integrate systems of differential equa-
tions.

The physical metaphors mentioned above describe
theories of individual action, adaptation and change.
A single individual’s developmental trajectory, self-
regulation, or psychological states and traits thus must
be studied as processes (Nesselroade, 1991) where the pa-
rameters of individuals’ processes are first estimated and
only then are population distribution characteristics de-
rived (Molenaar, 2004). If research into human behavior
and/or the aetiology of diseases is to result in theories
that can be applied to individuals, this type of process-
oriented research is essential (Boker, Molenaar, & Nessel-
roade, 2009).

The idea of behavioral processes evolving over time
has been explored within the general framework of dy-
namical systems using a wide variety of contexts and
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models (e.g., Kelso, 1995; Pozzo, Levik, & Berthoz, 1995;
Zanone & Kelso, 1992). This way of thinking about in-
dividual processes has led to interesting insights such as
the idea of a behavioral attractor. An attractor describes
the behavior of a process when it is in the vicinity of
its equilibrium. Attractors and equilibria can be slippery
concepts, so simple examples will be provided prior to in-
troduction of a more rigorous mathematical section with
statistical models that can be fit to data.

The current article develops a multi-timescale frame-
work to model processes in terms of balancing forces:
Adaptive Equilibrium Regulation (ÆR). This framework
accounts for short term regulation as a separate process
from longer term adaptation. This separation of regula-
tion into models at two different timescales is useful since
we can then map it to a wide range of phenomena such as
perceptual learning and its underlying neural mechanisms
(Schiltz et al., 1999), acquired tolerance and withdrawl
symptoms in substance dependence (Tiffany, 1990), the
honeymoon effect in romantic relationships (Aron, Nor-
man, Aron, McKenna, & Heyman, 2000), or resiliency in
daily positive affect (Boker, Montpetit, et al., 2010). The
adaptive equilibrium regulation framework can be used
to model the macro behavior of basic neural mechansims
and as such is likely to be useful for the analysis of many
systems that regulate sensitivity, expressivity, and activ-
ity in living organisms.

Concepts will be introduced from dynamical systems,
differential equations, and introductory physics—the no-
tions of force, acceleration, and equilibrium are central to
translation of process-oriented theories into empirically
testable models. Along the way, physical and psycho-
logical examples will be given in order to ground these
relatively abstract notions in familiar territory. We will
discuss errors likely to be made when typical analyses are
used to model phenomena that exhibit adaptive equilib-
rium regulation. We suggest that while theories about
average equilibria over populations may be well-served
by commonly used methods, process-oriented and person-
specific theories tested with population-oriented methods
are likely to produce a variety of systematic erroneous
conclusions. The article concludes that there are likely to
be errors in the psychological, developmental, and med-
ical literature that will continue to persist until person-
oriented methods are used to test process-oriented theo-
ries.

What Are Equilibria?

When asked to “maintain your equilibrium”, the first
thought that comes to mind is likely to concern the act
of upright standing. This is actually quite a complicated
equilibrium since we can use flexion and tension at our
ankles, knees, pelvis, spine, shoulders, elbows and wrists
to manage this task and thus a large number of degrees of
freedom are at our disposal. The task of upright standing
is an example of an unstable equilibrium. That is to say,
if we do not continuously and appropriately apply mus-
cle flexion and tension, we will fall down. When motion
tracked, it becomes obvious that people do not stand ab-
solutely still when asked to maintain their equilibrium in

upright stance, even when also instructed to “stand as still
as you can” (Stoffregen, 1986). This continuous postural
adjustment, termed rambling and trembling by Newell and
colleagues (Slobounov, Moss, Slobounov, & Newell, 1998)
can be seen as having at least three sources. First, small
errors in compensation towards the unstable equilibrium
point may cause over- or under-shoot and then must in
turn be adjusted. In an ideal system, an unstable point
equilibrium is infinitely small and so in real systems, one
is unlikely to exactly achieve the equilibrium point. Sec-
ond, one must take perception into account. Joint angles
are perceived using stretch receptors that require some
movement in order to signal (Clark, Horch, Bach, & Lar-
son, 1979). Movement is also required for the inner ear
and vision to contribute to adaptive compensating flex-
ion and tension of the body (Berthoz, Lacour, Soechting,
& Vidal, 1979; Stoffregen & Pittenger, 1995). As move-
ment is reduced, the accuracy of perception of one’s po-
sition relative to equilibrium is also reduced. Thus, it is
adaptive to move when maintaining equilibrium in up-
right standing whereas attempting to stand completely
motionless leads to inaccurate regulation of posture. Fi-
nally, the third reason one may move is that the environ-
ment may be changing. Standing on a sidewalk is different
than standing on a train or tram. These three sources of
variation in observed trajectories—equilibrium type, per-
ception/regulation, and changing environment—form the
basis of the adaptive equilibrium regulation framework.

Imagine, if you will, a wooden ball about 10 cm in di-
ameter and painted red. Now imagine a circus performer
giving the ball to a trained seal so that it can balance it
on the tip of its nose. We applaud because we know that
this is not an easy task. Even when the ball is in perfect
equilibrium as in Figure 1-a, any small perturbation, per-
haps a little gust of wind as in Figure 1-c, will cause the
ball to fall unless the seal adapts to this changing context.
In fact, our imaginary circus seal will be moving all the
time, compensating for movements of the ball. The type
of equilibrium is an unstable point equilibrium and so it
is likely for the seal to under- or over-shoot. The seal
is perceiving the ball’s position and movement and then
regulating by moving its nose in order to push the ball
towards an infinitesimally small point equilibrium. Our
imaginary small gusts of wind provide the changing envi-
ronment. The clever seal does not drop the ball and we
give it an ovation because we know the difficulty of this
task.

The Oxford English Dictionary primary definition for
equilibrium is “state of balance” (The Concise Oxford
Dictionary of the English Language, 1982, pg. 326). But
what is being balanced? Our clever seal could be said to
be balancing the red wooden ball, but the ball is always in
motion. What exactly is being balanced here? In essence,
it is a balancing of forces: gravity versus the seal’s nose.
As we recall from introductory physics, force is mass times
acceleration. The acceleration due to gravity is constant
and in a constant direction from the seal’s perspective.
The mass in this system is the mass of the red wooden
ball and that is also a constant. So the force applied by
the seal must be equal in magnitude and opposite in di-
rection to the force of gravity for the ball to continue to
stay “in balance”. The quotes are placed around “in bal-
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Figure 1: Graphic depictions of stable and unstable equilibria. a) The ball is placed exactly at the unstable
equilibrium at the top of the seal’s nose and the resulting force vectors exactly cancel. b) The ball is placed
exactly at the stable equilibrium point at the bottom of the bowl and the forces vectors cancel. c) The ball is to
the left of center of the seal’s nose and the force vector from the seal’s nose is orthogonal to the point of contact
with the ball and so pushes the ball away from the equilibrium point, an example of an unstable equilibrium. d)
The ball is to the left of the bottom of the bowl and the force vector from the bowl is orthogonal to the point of
contact and so pushes the ball back towards the equilibrium point. Thus this is a stable equilibrium.

ance” because even though in aggregate the ball is being
balanced, if we were to measure the vector of force applied
to the ball by the nose of the seal at any instant in time,
there is a vanishingly small probability that it would be
exactly equal to -1 times the mass of the ball times the
constant acceleration of gravity. However, if we take the
mean of the force vectors applied by the seal’s nose over
the few minutes of the act, we will find that in the aggre-
gate they do in fact balance the force exerted by gravity
on the ball. While this is a gratifying result, note that
performing the aggregation obscures the process by which
the seal adapts to its perception of the ball so as to keep
the ball from falling. This is an important distinction and
one which often arises in research into human processes:
aggregation helps to find where balance happens, but tells
little or nothing about how that balance came about.

Now imagine that the red wooden ball is resting in a
large mixing bowl with a rounded bottom as in Figure 1-
b. If the ball is at the center of the bowl, it is at the
bottom of the bowl. The upward force vector of the bowl
exactly cancels the downward force vector produced by
gravity and so the ball is “in balance” and can be said
to be at its equilibrium. But now, if the ball is pushed
away from the bottom of the bowl, the force vector pro-
duced by contact with bowl is pointed back towards the
equilibrium as in Figure 1-d. This is called a stable point
equilibrium and the ball will tend to roll back towards the
equilibrium point no matter which direction it is pushed.
This balancing act is too easy and so we do not applaud
for the bowl. However, just as with the seal, if we take the
mean of many measurements of the position of the ball as

it is pushed by small gusts of wind, we can calculate an
estimate of the point equilibrium.

It may seem trivial that the ball can be balanced by
the bowl whereas it is much more difficult for the seal.
But each of these toy examples are balancing acts. By
decomposing these examples into questions about how
and why the forces are being produced, we can better
understand the processes involved — not just that there
is balance, but how the balance is achieved. In order
to estimate these forces, we will need to make repeated
observations of the ball’s position. Then, by using the in-
formation about how the ball’s position changes, we can
answer useful questions about the systems such as, “How
is stability related to the shape of the bowl?” Or, “How is
instablility related to the relative sizes of the ball and the
seal’s nose?” More deeply, with several different bowls
and balls, we can even estimate the acceleration due to
gravity and thus tell which planet we are on!

What data are required in order to estimate properties
of the ball-and-bowl system? If we make measurements
of the horizontal position of the ball every millisecond for
an hour (60,000 position samples!), that would seem to be
a rich source of data. Surely we wouldn’t need any more
than that. But suppose that the ball is just resting at the
bottom of the bowl for the entire hour we are measur-
ing. All of the measurements would be exactly the same
number. The mean would tell us the position of the equi-
librium. But, we would have no information about the
shape of the bowl. In fact, we couldn’t tell the difference
between a bowl and a flat table if all of the measure-
ments are the same. We need to observe the ball being
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Figure 2: Graphic depictions of balanced and unbalanced forces. a) The ball is placed at the stable equilibrium at
the bottom of the bowl and the resulting force vectors exactly cancel. b) The ball is placed anywhere on a level
table and the force vectors cancel. c) The ball is to the left of the bottom of the bowl and the force vectors do
not cancel. The angle between the two vectors relative to the distance from the center tells us about the shape
of the bowl. d) The ball is the same distance to the left of the bottom of a more shallow bowl and the angle
between the force vector from the bowl and the force vector of gravity is smaller.

regulated in order to estimate parameters of regulation.
Looking back at Figure 1-d, it is the time evolution of
the differences in the force vectors that tell us about the
bowl. We can only estimate the force vectors when the
system is not at equilibrium — when it is out of balance.

To see why we need imbalance in order to understand
regulation, consider Figures 2-a and 2-b. When the ball
is at equilibrium, either at the bottom of the bowl or sit-
ting on a level table, the forces exactly cancel out. Since
we can only measure the position of the ball and not di-
rectly measure the forces, there is no way to tell if we
are on the earth or the moon. On the moon the force
vectors would cancel each other exactly like they do here
on earth and the ball would not move. Now consider the
difference between Figures 2-c and 2-d. The ball is not
at equilibrium and the force vectors do not cancel. For a
given displacement from equilibrium, the steeper bowl has
a larger mismatch between the force vector from the bowl
and the force vector from gravity than does the more shal-
low bowl. This mismatch can be represented as an angle
between the force vectors.

So, how does that help us? Remember that force is
equal to mass times acceleration. Since the mass of the
ball is constant, the difference between the two forces can
be observed as acceleration of the ball. If we have many
measurements of the position of the ball, we can estimate
the second derivative (acceleration) of this time series for
every measurement and thus estimate the mismatch in
forces for each observed displacement from equilibrium.
There are R functions such as GLLA (Boker, Deboeck,
Edler, & Keel, 2010a) and GOLD (Deboeck, 2010) that

give estimates of displacement, first derivative, and sec-
ond derivative of time series. Derivative estimates of vari-
ables with respect to time are the pathway to understand-
ing processes because these estimates directly measure the
mismatch in forces in a system at each moment in time.
When regularities in this mismatch are observed, param-
eters of regulatory processes can be estimated.

Of course, the physical systems discussed above are
simple and the answer to “Which planet are we on?”
should be obvious. But now consider psychological sys-
tems such as regulation of affect in the presence of stress
and its relation in turn to cognitive performance. It is
not obvious even what system of rules should apply. And
that is what we are after — systematic rules that have ap-
plication to systems of individual human behavior, devel-
opment, and health. Thinking about these systems from
the standpoint of equilibria and the forces that are oper-
ating is appealing since we can map the concept of phys-
ical force onto the concepts underlying structural equa-
tion modeling. A one unit change in a predictor variable
produces some predicted change in an outcome variable
—Increase the force that is supplied by one variable in a
model and the imbalance of forces is resolved into a new
equilibrium.

When we make intuitive appeals to physical analo-
gies such as “mood swings” or “under pressure” or “re-
silience” are we dragging along physical baggage like “mo-
mentum”, “heat” or “elasticity” inappropriately? Or do
these metaphors actually make sense? One thing is clear:
aggregation methods that estimate only the means and
variances of variables across individuals are unable to test
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Figure 3: Graphic depictions of regulatory forces. a) The ball is placed at a preferred equilibrium on a level table.
b) An external force is applied which moves the ball to the right and a regulatory force is generated due to the
1cm discrepency between the current and preferred position. c) As the position becomes more discrepant, the
regulating force becomes larger until, d) the regulatory force exceeds the external force and e) the ball begins to
move back towards the preferred equilibrium. f) The regulating force reduces as the ball approaches equilibrium
until f) the forces are balanced exactly at equilibrium.

these sorts of process-oriented metaphors because they
only estimate values for the equilibria and not the pro-
cesses by which mismatches in forces are resolved into
equilibria. We will need to understand relationships be-
tween variables in terms of effects that have properties
similar to those exhibited by force in physics if we are to
understand and test models of processes.

What is Regulation with Respect
to Equilibrium?

The adaptive equilibrium regulation framework for
process-oriented models includes three components: equi-
librium type, perception/regulation, and environmental
context. So far, we have examined some consequences of
two categories of equilibria: stable and unstable. There is
a third interesting category of equilibria — combinations
of both stable and unstable properties in the same equi-
librium. This third category of equilibria is the one that
includes the possibility of chaotic processes. In the re-
mainder of the article we will consider a set of important
regulatory systems with equilibria that are either only
stable or only unstable.

How do we know if a system is not currently in bal-
ance and how do perception and regulation lead to the
formation of a balanced state? As an example, consider
a psychological variable such as positive affect (Watson,
Clark, & Tellegan, 1988). When measured intensively
over time within individual, self-reported positive affect
tends to fluctuate with a relatively short interval timescale

(e.g. Steele & Ferrer, 2011; Erbacher, Schmidt, Boker, &
Bergeman, 2012; Ong, Bergeman, Bisconti, & Wallace,
2006). The within-person mean of positive affect is a
reasonable estimator of the central tendency of the dis-
tribution of within-person scores. Thus, it seems not un-
reasonable to hypothesize that there exists a process that
regulates positive affect and that process may operate in
such a way that an equilibrium will be observed. This ap-
peals to intuition, since one often hears individuals report
being “out of balance” with respect to affect. While we
would not wish to accept an appeal to intuition as empir-
ical evidence, we can at least say that it is plausible that
individuals can perceive their own momentary affective
state relative to their preferred equilbrium.

Given a perception of imbalance in positive affect,
how would regulation work? Let us consider this process-
oriented system as a thought experiment in terms of bal-
ancing of forces. In our thought experiment we will as-
sume that there exists a preferred equilibrium, that is to
say a level of positive affect at which the person func-
tions best. We will then consider how regulation over the
short term and adaptation over the long term might come
about.

Suppose our red wooden ball is resting on a table at
its preferred equilibrium as shown in Figure 3-a. Next,
suppose that a force from the environment pushes the
ball towards the right as in Figure 3-b. We will suppose
that this force is constant during our thought experiment.
The ball can perceive that its position is being displaced
to the right and so a regulating force appears in Figure 3-b
pushing to the left. But the regulating force is too small,
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so the ball’s position continues to be displaced further to
the right in Figure 3-c. The regulating force grows until it
is larger than the external force in Figure 3-d and the ball
begins to move back to the left. As the ball approaches
its preferred equilibrium, the regulating force reduces un-
til it balances the external force so that in Figure 3-g the
ball has returned to its preferred equilibrium and all the
forces are balanced.

What does the wooden ball need to know in order to
perform this regulation task? First, it needs to be able to
estimate its displacement from its preferred equilibrium.
In this way it can increase the regulating force until it ex-
ceeds the external force. But suppose displacement was
all it knew. As the ball approached equilibrium, the regu-
lating force would continue to be reduced until it became
smaller than the external force and the ball would again
move away from equilibrium. If all the ball knows is its
distance from equilibrium, we will find that this system
will oscillate indefinitely and always be to the right of the
preferred equilibrium. In order for the appropriate regu-
lating force to be found that exactly balances the external
force (as in Figure 3-g), the ball must have a way of esti-
mating the magnitude of the external force. This means
that it must be able to estimate not only how far it has
been displaced from its equilibrium, but also whether the
currently supplied regulating force is sufficient to move
the ball back towards its equilibrium. Thus it needs to
know both its position and velocity relative to equilibrium
— if at a given displacement from equilibrium its velocity
is away from equilibrium it needs to increase the regu-
lating force, but at the same displacement if the velocity
is towards equilibrium it needs to decrease the regulating
force.

Let us return to the psychological example of positive
affect. Suppose some positive influence, perhaps a new
friend, pushes an individual’s affect above the personal
baseline equilibrium for positive affect. Over time, sup-
pose that this continuing positive influence is regulated
such that the individual returns to his or her personal
baseline. Now, suppose that the positive influence is re-
moved — the friend moves to a distant town. This model
for affective regulation would predict that there would be
something like a rebound effect such that the individual’s
positive affect would be automatically decreased due to
the removal of the external force. The post-friendship de-
pression would increase until the regulating system can
perceive that the individual’s positive affect is too low,
and then the internal regulating force causing the depres-
sion would decrease until it changed sign and pushed pos-
itive affect back up to its baseline equilibrium. While a
thought experiment is insufficient evidence to support a
theory, we can say that this model of regulation is not
inconsistent with intuitive experience.

This adaptive equilibrium regulation model is one way
of thinking about dependency. Removing a positive force
produces change in affect in the negative direction. This
type of balancing of forces model could be applied to a
wide variety of psychological and health systems, e.g., ro-
mantic couples or substance use. The period of higher
positive affect just after application of the positive en-
vironmental force maps to what people call the “hon-
eymoon” period. The depression just after removal of

the positive environmental force maps to “withdrawl”.
For example, when an reformed alcoholic starts drinking
again, there is a period of exhilaration before drinking be-
comes the norm. Tolerance builds up as larger amounts
of alcohol are needed to obtain the “honeymoon” effect.
Eventually, drinking is maintained solely to keep with-
drawl symptoms at bay. This substance dependency ex-
ample maps to the regulation model depicted in Figure 3.

The same model predictions could be applied to a neg-
ative force. At first the negative force depresses positive
affect, but eventually equilibrium is achieved back at the
preferred state. When the negative force is removed, a
rebound is predicted to occur. This rebound effect could
be summarized using the colloquial adage, “Why am I
beating my head on the wall? Because it feels so good
when I stop.”

Now let’s return to the red wooden ball in the bowl
as in Figure 4-a. How does this balancing-of-forces model
for regulation relate to how the ball rolls around in the
bowl? Suppose that the preferred equilibrium point for
the ball is at the center of the bowl. With no external
forces and if the bowl is level and symmetric, the bottom
of the bowl exactly coincides with the center of the bowl
and so the ball is at a stable and preferred equilibrium. If
a constantly applied external force pushes the ball to the
left, a regulating force in the opposite direction is auto-
matically generated due to the curvature of the bowl as
in Figure 4-b. The larger the displacement from equilib-
rium is, the larger the regulating force will be. But this
results in the situation shown in Figure 4-c where there is
a balancing of forces such that the ball comes to equilib-
rium to the left of the preferred equilibrium at the center
of the bowl. Now by tipping the bowl, as in Figure 4-d,
the regulating force vector is increased and the ball moves
back towards equilibrium until in Figure 4-e balancing of
forces is achieved and the center of the ball is directly
over the center of the bowl. But it is evident that if the
external force is removed, the ball will move away from
the center of the bowl until the bowl can be retilted to
again be level.

The ball-and-bowl model is one way to implement the
regulation of positive affect example. The mechanism
that tilts the bowl will need to know the displacement
from preferred equilibrium and the velocity of the ball in
order to appropriately adapt the tilt of the bowl. The
argument is the same as it was for the affect regulation
model: for a given displacement from equilibrium, if the
ball is moving away from the center, the bowl needs to
be tilted more but if the ball is moving towards the cen-
ter, the bowl needs to be tilted less. We find this to be a
useful construct because it separates the part of the reg-
ulation due to the shape of the bowl, i.e., the part that is
dependent only on displacement from equilibrium, from
the part that attends to a combination of velocity and
displacement, i.e., the bowl tilting mechanism.

Although the bowl itself forms an attractor around a
stable point equilibrium, once a mechanism is invoked to
tilt the bowl, the system could be considered to be quasi-
stable. That is to say, even if the bowl is in balance at the
equilibrium point as in Figure 4-e, removal of an external
force will cause the ball to move away from equilibrium.
This is not an unstable equilibrium since even if the tilt-
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Figure 4: Graphic depictions of regulatory forces acting in a ball-and-bowl model. a) The ball is placed at a
preferred equilibrium at the center of the bowl and forces are balanced since the center of the bowl is also the
bottom of the bowl. b) An external force is applied which moves the ball to the left and a regulating force is
generated since the 1 cm discrepency is related to the curvature of the bowl. However, the regulating force is to
small and so c) the ball moves up the side of the bowl until it stops when the forces balance at 2 cm from its
preferred equilibrium point at the center of the bowl. d) Since there still is a discrepency between the center of
the bowl and the current position, the bowl is tipped until the regulating force exceeds the external force. e) the
bowl is tipped until the forces are balanced and the position is at the preferred equilibrium at the center of the
bowl.

ing mechanism breaks, the ball will still come into balance
somewhere in the bowl. However, this is an example of
a non-ergodic system. Since the bowl is essentially re-
configuring itself to respond to changing context in the
environment, we cannot rely on a randomly selected time
interval to be a representative sample to generate aggre-
gate estimates for a population of bowls. The bowl is
tilting itself based on the context of environmental forces
around it, but the bowl does not need to change shape.

We can recover the shape of the bowl and the parame-
ters of the tilting mechanism for each person by studying
the movement of the ball for each person, i.e., a person-
oriented time series. If the ball does not move, there
is no information to estimate person-specific regulation
and adaptation—only by studying imbalance do we learn
about balance. A cross sectional study provides only a
single observation per person and so provides no estimate
of movement and therefore cannot tell us about regula-
tion and adaptation. Estimating person-specific regula-
tion and adaptation is the only way we can recover the
nomothetic laws that govern regulation and adaptation in
the population.

How might changes in environment lead to changes in
regulation? A possible answer is that there exists a set
of general principals that allow a regulating organism to
balance forces to achieve equilibria. The resulting equi-
libria may themselves change as characteristics of the en-
vironment change and as the organism develops and ages.
The equilibria and the parameters of regulating processes
may be very different in childhood and in old age, but
the principals of balancing forces could apply equally to

any age. It is also important to recall that people make
choices about and changes to their environments. One
effective regulatory strategy is to change aspects of the
environment: If one is cold, throw another log on the
fire. Another strategy is to select a new environment: If
one is cold while outside and there is no chance of af-
fecting the environment, go indoors. Thus regulation can
effect changes both in the regulating force as well as in
the environmental force. Regulation effects flow in both
directions: environment can influence equilibria and reg-
ulation, which in turn can influence the environment.

Identifying and Estimating Reg-
ulatory Processes.

In order to translate a theory that uses the adap-
tive equilibrium regulation framework into a testable
model, the three components—equilibrium type, per-
ception/regulation, and environmental context—must be
mapped onto model equations. We have, through thought
experiments, demonstrated that acceleration and velocity
of the system are critical inputs to mechanisms that would
instantiate adaptive equilibrium regulation. We have also
noted that there are two timescales that must be taken
into account. With these constraints in mind, it is evi-
dent that formulating the model in terms of differential
equations will be a useful step.

In general, we have seen that imbalance in forces leads
to a prediction of acceleration in the short term regula-
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tion process as a function, f of the difference between the
force vectors acting on the system. So, for a variable, x,
modeled at time, t,

d2x

dt2
(t) = f(∆F ) (1)

where where d2x
dt2

(t) is the second derivative of x at time
t and ∆F is the difference in the force vectors. In our
physical examples, this regulation can be expressed as a
function of displacement from the preferred equilibrium.
Thus, if a variable x is modeled at time t with preferred
equilibrium Ep then

d2x

dt2
(t) = f(Ep − x(t)) (2)

where d2x
dt2

(t) is the second derivative of x at time t and
f(Ep − x(t)) is some function of the difference between
the preferred equilibrium and the value of x at time t.
Of course, it is possible that quantities other than just
the displacement from equilibrium will be needed to fully
specify the function f . One linear model that expresses
acceleration in terms of a function of displacement from
equilibrium is a linear oscillator, which in physics is the
model for an ideal zero length spring or a frictionless pen-
dulum,

d2x

dt2
(t) = η(Ep − x(t)) (3)

where here f is just a proportion −1.0 >= η >= 1.0
times the displacement from equilibrium. When η is neg-
ative, the equilibrium type for this model is a stable point
equilibrium. This maps exactly to the ball-and-bowl de-
scribed earlier when the bowl is parabolically shaped and
the η represents the steepness of the bowl: if η is nega-
tive, the bowl creates a stable equilibrium at its lowest
point and if η is positive, the bowl is upside down and
represents an unstable equilibrium. Often, it is useful to
introduce a friction term into this model, giving

d2x

dt2
(t) = η(Ep − x(t)) + ζ

dx

dt
(t) (4)

where ζ is a linear coefficient expressing friction (if nega-
tive) or amplification (if positive) and dx

dt
(t) is the first

derivative of x at time t. This is the damped linear
oscillator (DLO) model that has been increasingly used
in the past two decades to account for fluctuations in
within-person time series such as daily affect (Pettersson,
Boker, Watson, Clark, & Tellegen, 2013), coupling during
physical coordination tasks (Butner, Amazeen, & Mulvey,
2005), and emotion regulation in widowhood (Bisconti,
2001) to name a few.

Our thought experiments led us to conclude that
adaptation to a persistent force will require, at a mini-
mum, knowing how far the system is from preferred equi-
librium and also its first derivative. So, for a system where
there is a constant external force Fe, we can model the
adaptive force, Fa, as

dFa

dt
(t) = Mg((Ep − x(t)),

dx

dt
(t)) (5)

where dFa
dt

(t) is the first derivative of the adaptive force,
M is a constant mass, and g is a function of the displace-
ment from preferred equilibrium (Ep−x(t)) and dx

dt
(t) the

current rate of change in x. Since all of the forces are act-
ing with respect to the same constant mass M , mismatch
in forces again can be expressed in terms of mismatch
in accelerations by dividing both sides of Equation 5 by
M . Thus the first derivative of the adaptive force can
be expressed as a change in acceleration, i.e., the third
derivative of the variable x with respect to time,

d3x

dt3
(t) = g((Ep − x(t)),

dx

dt
(t)) (6)

where d3x
dt3

(t) is the third derivative of x with respect to
time at time t.

A simple linear model for this type of system maps
onto the tilted bowl thought experiment such that the
function g is a linear combination of the long term dis-
placement and velocity that accounts for the rate of
change in adaptive force. In order to keep this distinction
between short and long timescales clear, we will denote
the contribution of the long timescale displacement from
equilibrium as (Ep − xL(t)) and its associated velocity
dxL
dt

. The linear model for long term adaptation can now
be written as

d3xL
dt3

(t) = α1(Ep − xL(t)) + α2
dxL
dt

(t), (7)

where α1 is a proportional constant is the degree to which
displacement from preferred equilibrium is avoided and α2

represents the proportional constant for the ball’s veloc-
ity. One can now map these parameters to a bowl tilting
mechanism where the change in tilt (change in relative
acceleration) increases when the displacement from pre-
ferred equilibrium increases and also increases when the
ball is moving away from equilibrium. If this mechanism
is operating at the same timescale as the short timescale
regulation then the equilibrium type of the combined sys-
tem might not be stable. However, when the timescale
of the tilting mechanism is sufficiently larger than the
timescale of regulation then the equilibrium of the com-
bination of regulation and adaptation is stable whenever
the short and long timescale equilibria are both stable.

The forces acting in the short timescale regulation
must also include those forces due to long timescale adap-
tation. The total regulating force is thus some function of
both the force provided by both regulation and adapta-
tion. The simplest function for combining is a linear com-
bination of these two forces as occurs in the ball-and-bowl
model. The tilt of the bowl increases the angular diffence
between gravity and bowl for a given distance from pre-
ferred equilibrium. By examining Equation 7 we see that
if the ball is at the preferred equilibrium (Ep−xL(t) = 0)
and the ball is not moving ( dxL

dt
(t) = 0) the tilt is not

changing — the tilt is at equilibrium. As long as α1 and
α2 are chosen appropriately, the tilt equilibrium is stable.
Thus, if the tilt is perturbed away from equilibrium, it re-
turns to equilibrium. At short timescales, if Ep−x(t) = 0
and dx

dt
(t) = 0 the short timescale regulation mechanism

in Equation 4 is also at a stable equilibrium. Thus, the
system as a whole has a stable equilibrium point at the
preferred equilibrium.

To find the acceleration contribution of the long
timescale adaptation to the short term forces for a chosen
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time, t, we can take the specific integral of Equation 7 as

d2xL
dt2

(t) = C(t) + α2(Ep − xL(t)) (8)

where C(t) is the constant of the specific integral. Note
that for a chosen time t, the displacement term from
Equation 7, α1(Ep − xL(t)), is a constant and so is sub-
sumed into the constant, C(t). However, this term, C(t),
is not the same for all t. The adaptation mechanism pro-
vides a balancing acceleration, but as the tilt of the bowl
changes with time, the acceleration provided by the bowl
also changes with time.

When the system is at equilibrium, Ep − x(t) = 0
and so the acceleration due to the tilt of the bowl re-
duces to C(t). In order to balance the forces at equilib-
rium, the adaptive force due to the tilt, Fa = MC(t) must
be counteract the persistent and constant external force,
Fe = MAe, where Ae is the external acceleration. Thus
for a given mass M ,

MC(t) = MAe (9)

C(t) = Ae (10)

Thus the specific integral constant, C(t), is equal to the
externally applied acceleration, Ae, when time t is chosen
to be such that the system is at equilibrium. In this way,
an adaptive equilibrium regulation model can estimate
and compensate for environmental forces that persist over
the longer timescale at which adaptation happens while
allowing the short term regulation mechanism to accom-
modate and regulate momentary environment forces.

When fitting models such as these using filtering
methods such as Generalized Local Linear Approxima-
tion (Boker, Deboeck, Edler, & Keel, 2010b) or Latent
Differential Equations (Boker, Neale, & Rausch, 2004),
the number of observations (or window) covered by the
filter needs to be specified. This can be accomplished by
choosing the number of columns for time delay embed-
ding (Sauer, Yorke, & Casdagli, 1991; Oertzen & Boker,
2010) for fitting this part of the model. A smaller win-
dow results in the estimation of derivatives focusing on a
shorter timescale and a wider window estimates for longer
timescales. This can be used to separate the contribution
of shorter and longer timescales. For instance a process
is sampled once an hour and if a 5 column embedding is
used for the shorter timescales and a 24 column embed-
ding is used for the longer timescales, the shorter embed-
ding will tend to focus on derivatives that exhibit change
over an interval of 2 hours or so. On the other hand, the
longer embedding will tend to smooth over those shorter
intervals and focus on average changes over half a day
or so. Both embeddings can be constructed side by side
so that each row of a multi-timescale time delay embed-
ded matrix includes columns for the shorter timescale and
columns for the longer timescale.

The closer the shorter and longer timescales are to
one another, the more likely the regulation and adapta-
tion cannot be so simply separated. For instance, con-
sider once again the circus seal balancing the ball on its
nose. One reason that this task is so difficult is that the
timescales of regulation and adaptation are so similar.
Balancing a 2 meter pole on one finger is much easier

than balancing a basketball on one finger (Foo, Kelso, &
Guzman, 2000). The reason that the pole is easier is that
the length of the pole increases the difference between
timescales of regulation and adaptation. Regulation and
adaptation to unstable equilibria become easier both for
the regulating individual and for statistical estimation as
timescales become separable.

Conclusions

As organisms regulate themselves and adapt to environ-
ments, mechanisms must be present to respond to mo-
mentary, i.e., short timescale, perturbations as well as
longer term persistent forces. We have explored some
thought experiments about how regulation and adapta-
tion might be instantiated in human systems and devel-
oped a framework we called Adaptive Equilibrium Regu-
lation (ÆR). The framework is plausible in that it could
model commonly observed phenomena such as the “hon-
eymoon effect” in romantic relationships, drug depen-
dence and withdrawal, perceptual learning in vision, or
resiliency in affect regulation. Models for regulation and
adaptation were built using the logic that there must be a
balancing of forces in order for a system to have an equi-
librium. We then translated the thought experiments into
testable differential equations models.

The ÆR framework is a useful construct in that it
helps identify and clarify ways in which regulation and
adaptation might be instantiated. However, at this point,
this is purely a theoretic contribution. The proposed
models must be tested using empirical person-oriented
timeseries if they are to be truly helpful in understanding
human systems. In addition, we have simplified our pre-
sentation to one-dimensional dynamics: models with just
a single variable to be regulated. As more variables are in-
troduced, or as coupled systems (such as a pair of roman-
tically involved individuals) are modeled, the dynamics
and the equations become ever more complex; regulating
and adapting in ever more varied ways. If we are to study
human processes, we must embrace this complexity in our
person oriented models.

It is worthwhile to remember the somewhat surprising
result that only by studying systems when they are out
of balance can we understand how these systems regulate
their balance. Only by studying systems that are chang-
ing can we understand how systems come to rest. This
could be expressed as a paraphrase on the Chinese philos-
ophy of wú wéi, the philosophy of “action from inaction”.
The ÆR philosophy might be stated as, “balance from
imbalance”.

Finally, it cannot be over emphasized that commonly
used aggregation methods result in knowledge about the
location of equilibria, but obscure the processes by which
these equilibria are formed and maintained. Only by us-
ing intensive longitudinal measurement of individuals and
modeling these timeseries can we understand the pro-
cesses of regulation and adaptation. We need to first
model how an individual regulates and how an individ-
ual adapts in order to estimate and understand individual
differences in regulation and adaptation.
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