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Abstract: In longitudinal person-oriented and idiographic research, individual-specific parameter estimation is strongly 

preferred over estimation that is based on aggregated raw data. In this article, we ask whether methods of the General Linear 

Model, that is, repeated measures ANOVA and regression, can be used to estimate individual-specific parameters. Scenarios 

and corresponding design matrices are presented in which the shape of temporal trajectories of individuals is parameterized. 

Real world data examples and simulation results suggest that, for series of sufficient length, trajectories can be well described 

for individuals. In addition, scenarios are presented for the comparison of two individuals. Here again, trajectories can be well 

described and the statistical comparison of individuals is possible. However, in contrast to the power for the description of 

individual series, which is satisfactory, the power for the comparison of individuals is low (except when effect sizes are large). 

In all simulated scenarios, the power of tests increases only up to a certain number of observation points, and reaches a ceiling 

at this number. The fact that all parameters cannot always be estimated is also discussed, and options are presented that go 

beyond what standard general purpose software packages offer. 

Keywords: General Linear Model, single subjects, intensive longitudinal data 

 

In developmental research, trajectories are of major 

interest. Trajectories are constituted by series of scores 

through time or space. They describe individuals or groups 

of individuals. To be able to describe developmental 

trajectories, developmental research requires repeated 

observations of the same behavior. The description itself 

can focus on any of a very large number of characteristics 

of a trajectory. Most prominent are level of a trajectory, and 

change in level; the spread of scores from a sample of 

individuals at a given point in time, and change in the 

spread; and the shape of a trajectory, and differences in 

shape, both inter- and intraindividually. The present article 

is concerned with the latter two characteristics of a 

trajectory. We address three issues. First, we discuss the use 

of methods from the General Linear Model (GLM; 

McCullagh & Nelder, 1989; Kutner, Nachtsheim, Neter, & 

Li, 2004; von Eye & Schuster, 1998) for the analysis of 

developmental trajectories. In this discussion, we take a 

person-oriented perspective (see Bergman & Magnusson, 

1997; von Eye & Bergman, 2003; von Eye, Bergman & 

Hsieh, 2015), which, in the present context, coincides with 

the idiographic perspective (Molenaar, 2004; Molenaar & 

Campbell, 2009), and ask how GLM methods can be used 

to depict intraindividual trajectories and interindividual 

differences in intraindividual trajectories. Second, we ask 

questions concerning the length of the observed series of 

scores and the relation of this length to the statements that 

GLM methods allow about the characteristics of 

trajectories. Third, we ask statistical questions concerning 

these methods, for example, questions of power. 

Without repeating the tenets of person-oriented research 

in detail (see Bergman & Magnusson, 1997; von Eye et al., 

2015), we note that the first tenet states that the course of 

development is specific to the individual, at least in part. 

Therefore, and for reasons related to generalization (for 

theoretical discussions and examples, see von Eye & 

Bergman, 2003; Molenaar & Nesselroade, 2014), it is 

imperative that, when longitudinal data are analyzed, 
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parameters be estimated at the level of the individual, and 

generalization be performed using these parameters instead 

of the aggregated raw data (cf. Molenaar & Newell, 2010). 

As far as the length of a series is concerned, standard 

experimental designs rarely include more than just a few 

points in time, usually 4 or 5 (see the examples in, e.g., 

Kutner et al., 2004). On the other extreme, there are time 

series that include several hundred observation points. In 

between are intensive longitudinal data (Walls & Schafer, 

2006). These data are obtained using a number of 

observation points between the typical experiment and the 

typical time series. In this article, we are concerned with 

series of intensive data, and up. 

There have been earlier attempts to discuss the use of 

GLM methods (ANOVA) in person-oriented research. von 

Eye and Bogat (2007) illustrated how ANOVA can be used 

to compare groups in particular in their trajectories. The 

present work extends this earlier approach by discussing (1) 

GLM methods for the analysis of repeated measures of 

individuals and (2) the comparison of individuals. The link 

to the von Eye and Bogat (2007) discussion lies in the 

application of the methods presented here to cases with 

more than one individual per ANOVA cell. 

The development of statistical methods for the analysis 

of single cases has tradition. For example, there exists early 

work on single case ANOVA (e.g., Tukey, 1949; Scheffé, 

1959; Winer, 1970). The conclusion from this work is that 

either there are not enough degrees of freedom to test all 

effects when n = 1, or not enough power. Consider the case 

of a p x q factorial design with just one observation per cell. 

In this design, the variation within each cell is zero. By 

implication, there will be no estimate of error. Researchers 

may approach this design using the following two models 

(see Winer, 1970, p. 216). 

 

 

Using the first model, no interaction is estimated. This 

approach is comparable with the repeated measures 

ANOVA in which the highest order interaction that includes 

subjects is treated as the residual term. In analogy, here, the 

highest order interaction between the two design factors is 

treated as the residual term. Using the second model, the 

interaction is postulated. If it exists, the main effects of the 

design factors can be considered non-additive. Tukey (1949) 

has proposed a test of non-additivity, applicable in this case 

(see Scheffé, 1959). The cases discussed in the present 

article differ from the one just presented in that the factors 

are not experimental or design factors. Instead, the 'factors' 

discussed here are either points in time or individuals. We 

will point out that hypotheses can be specified for which 

there are enough degrees of freedom and sufficient 

statistical power (see Scenarios 5 and 6, below). 

Recently, other methods than ANOVA have been 

developed that allow researchers to analyze data from 

individuals. For example, von Eye, Mair, and Mun (2010) 

proposed lagged Configural Frequency Analysis (CFA) for 

individuals, and CFA methods for the analysis of 

interindividual differences in intraindividual change. 

Molenaar, Sinclair, Rovine, Ram, and Corneal (2009) 

proposed methods for the analysis of time series of 

individuals. Van Rijn and Molenaar (2005) presented 

logistic models for single subject time series, and Hamaker, 

Dolan, and Molenaar (2005) discuss structural models for 

the individual. For overviews of recent work, see Molenaar 

and Newell (2010) and Molenaar, Lerner, and Newell 

(2014). 

Other recent approaches are rooted in systems theory and 

methodology (see Molenaar, Lerner, & Newell, 2014). 

These approaches work with nonlinear functions and 

models, including differential equation models. However, 

Cunha and Heckman (2014) as well as Chow, Witkiewitz, 

Grossman, Hutton, and Maiso (2014) showed that linear 

models do not have to be dismissed when time series are 

studied. In the present article, we pursue this type of 

approach. 

Specifically, we discuss GLM methods. Depending on 

perspective, these methods could be viewed as 

single-subject repeated measures ANOVAs or regression 

models. We formulate the models so that they encompass 

both ANOVA and regression. In general, we agree with 

Tukey (1961; cited from Brillinger, 2002, p. 1612) in that 

“regression is always likely to be more helpful than 

variance components.” In this article, we take a GLM 

perspective and adopt the regression approach to ANOVA 

(see Kutner et al., 2004). 

This article is structured as follows. First, we review the 

GLM and ANOVA- and regression-type methods for lon-

gitudinal data. In this section, we also discuss coding with 

respect to characteristics of trajectories, and we give real 

world data examples. In addition, we discuss methods for 

the analysis of individual trajectories and methods for the 

comparison of two or more series. Finally, we present sim-

ulation results that indicate the number of data points needed 

in a series for adequate power. 

Repeated Measures ANOVA – The 

General Linear Model 

Regression and ANOVA are prominent members of the 

General Linear Model (GLM), which, in turn, is a member 

of the family of Generalized Linear Models (McCullagh, & 

Nelder, 1989). The Generalized Linear Model follows the 

form 

 

where f(y) is a function of the observed variable, Y. In the 

GLM, this function – called the link function – is the 
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identity function. In other words, the observed scores 

typically are not transformed. They are analyzed unchanged, 

as they are (for a discussion of curvilinear transformations, 

however, and their implications for statistical power, see 

Games, 1983, 1984). In this equation, X is the design 

matrix. In regression, this matrix contains, in its columns, 

the observed scores of the manifest predictors. In ANOVA, 

the columns of X contain the scores of the contrast 

variables. These scores reflect the mean comparisons the 

researchers intend to perform. Covariates can also be 

included as column vectors of X. β is the parameter vector. 

One parameter is estimated per effect. That is, one 

parameter is estimated per column vector in X. ε is the 

vector of residuals. In both regression and ANOVA, one 

residual is estimated per score on the dependent variable (in 

MANOVA, repeated measures ANOVA, and in multivariate 

regression, there are multiple dependent measures). 

Repeated measures ANOVA is known to pose strict 

requirements that are not always easy to meet. Examples of 

such requirements are discussed under the headers of 

compound symmetry or serial dependency. In the present 

context, we assume the reader is aware of these 

requirements (or is willing to read, for example, Kutner, 

Nachtsheim, Neter, & Li, 2005). We ask whether repeated 

measures GLM methods can be used for the purposes of 

person-oriented research. 

When groups are known a priori, ANOVA can be used to 

estimate group differences in means. This is well known 

also and has been discussed in the context of 

person-oriented research (von Eye & Bogat, 2007). Here, 

we ask whether ANOVA enables one to (1) estimate 

parameters at the level of the individual, and (2) compare 

the trajectories of individuals, in repeated measures designs. 

In the following sections, we first discuss GLM methods 

for the estimation of parameters for individual series of 

scores. This is followed by a discussion of GLM methods 

for the comparison of individual series of scores. 

 

Parameter estimation for individual series of scores 

 

For the following discussion, consider one individual 

that has provided the temporal series of M scores, y1, …, yM. 

These scores can be arranged as shown in Table 1. 

 

Table 1.  

Repeated Measures Design for one Individual 

Observation Points in Time 

T1 ... TM 

y1 ... yM 

x1 = 1 ... xM = 1 

 

Transposed, the second row of Table 1 contains the 

entries of the y vector in the equation  We 

now ask which parameters can be estimated to describe the 

series of M scores of this individual. In other words, we ask 

what hypotheses can be tested concerning the series of 

observed scores. To answer this question, we present three 

sample scenarios, each corresponding to a specific 

hypothesis. 

Scenario 1: Stability of behavior. Certain behaviors are 

considered more stable than others. For example, whereas 

intelligence or personality characteristics often are 

considered stable over time, emotions are considered 

time-varying. To test whether a series of observations 

reflects stability, the simplest of models can be employed. 

This model is specified with a design matrix, X, that 

contains nothing but the constant vector. This is the string 

of values 1 in the third row of Table 1. 

Data example. For the data example, we use data from 

the mother-infant project (MIS; see, e.g., Bogat et al., 2004; 

Huth-Bocks, Levendosky, Bogat, & von Eye, 2002; 

https://www.msu.edu/~mis/). The Mother Infant Study 

(MIS) first assessed women in their last trimester of 

pregnancy and at 2 months post-partum, and the women 

and their children yearly until the children were 10 years 

old. Women with a range of experiences of intimate partner 

violence (from none to severe) participated. Intimate 

partner violence was defined as male violence toward a 

female partner. Research questions concerned factors that 

predict risk and resilience in women and children exposed 

to intimate partner violence; and aspects of the home 

environment (e.g., maternal mental health, parenting style) 

and individual child characteristics (e.g., temperament) that 

predict problematic socio-emotional outcomes (e.g., 

aggression) in children. 

Here, we analyze stability of mood of Respondent 10 

over the course of the first four years after the birth of her 

child. The four mood scores are 1.909, 1.700, 1.385, and 

2.5. Figure 1 depicts these four scores. Regressed on a 

constant vector, one obtains a standardized regression 

coefficient of b = 0.977, with t (df = 3) = 7.974 and p = 

0.004. This value suggests that a constant explains a 

significant portion of the 'variability' of this series of four 

values. We conclude that this respondent is stable in her 

mood (note that the last value in the series could be 

considered an outlier; it comes with a studentized residual 

of 2.743). 

Scenario 2: Linear trend. In many instances, there are 

linear trends in behavior development. For example, skill 

acquisition leads to an increase in the number of mastered 

tasks. Even if the increase is non-linear, there still can be a 

linear trend. If the increase is non-linear indeed, the linear 

trend hypothesis may have to be supplemented by a 

non-linear trend hypothesis. Here, in Scenario 2, we are 

concerned with modeling a linear trend to a single series of 

observations. 

https://www.msu.edu/~mis/
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Figure 1. Mood of Respondent 10 over four years of ob-

servations; logarithmic smoother 

A linear trend can be represented by a string of scores 

that ascend (or descend) in equal steps. For the example in 

Scenario 1, one could use the scores 4, 3, 2, 1, or, when 

orthogonal polynomial coefficients are used (as they are 

known from repeated measures ANOVA), the scores 3, 1, 

-1, -3 (these scores fulfill the zero sum criterion and are 

orthogonal to coefficients of orthogonal polynomials of any 

other order; more detail on these polynomials follows be-

low, under Scenario 3). This vector is then included in the 

design matrix. If it explains a significant portion of the var-

iability of the outcome measure, the corresponding trend 

can be said to exist. 

Data example. Using the same data as for Scenario 1, we 

insert, in addition to the constant vector, the vector -3, -1, 1, 

3. This regression-type model yields the results given in 

Table 2. 

Evidently, the linear trend fails to explain a significant 

portion of the variability in our sample data. This is not 

surprising, for three reasons. First, the results obtained for 

the first scenario suggest that mood of respondent 10 is 

rather constant. Second, as Figure 1 shows, if there is any 

change in the mood of this respondent, it decreases at first 

and increases later. Third, three of the four data points are 

outliers, in the present analysis. Specifically, the first ob-

servation is a leverage outlier, the third observation is a 

distance outlier, and the fourth observation is both a lever-

age and a distance outlier.

 

 

Table 2.  

Regressing the data in Figure 1 on a constant vector and a linear trend vector 
Effect Coefficient Standard Error Standard 

Coefficient 

Tolerance t p-Value 

Constant 1.873 0.264 0.000  7.105 0.019 

Linear Trend 0.073 0.118 0.401 1.000 0.618 0.599 

 

 

Scenario 3: Polynomial approximation. Polynomial con-

trasts are among the most important options for repeated 

measures ANOVA. Using polynomials and composites of 

polynomials (for an overview of polynomials, see 

Abramowitz & Stegun, 1972), one can approximate any 

series of scores to the desired degree. Systems of orthogo-

nal polynomials play an important role in this context be-

cause the individual polynomials in these systems are in-

dependent of each other. This way, the contribution of each 

polynomial to the explanation of a series can be inde-

pendently ascertained. Specifically, consider polynomial 

coefficients as the ones used in Scenario 2, where we used 

the coefficients for a first order polynomial which is com-

parable to a straight regression line (coefficients -3, -1, 1, 3). 

These coefficients, cj, meet the following two conditions. 

First, they are centered. That is, the sum of coefficients is 

zero: ∑j cj = 0. Second, the inner vector product of coeffi-

cients from two polynomials of different order, say quad-

ratic and cubic, is zero as well: ∑j cjc´k = 0, where j = k = 

1, …, J,  and c ≠ c'. If the second condition is fulfilled for 

two polynomials, they are orthogonal. To illustrate, consid-

er the coefficients of the quadratic polynomial used in the 

data example below, 1, -1, -1, 1. The inner product of the 

coefficient vectors of the linear and the quadratic polyno-

mials is zero. This implies that the vectors of the coeffi-

cients of the two polynomials are orthogonal. 

Among the most important benefits from using systems 

of polynomials are the following two. Both will be used in 

the analysis of series of scores from individuals. First, 

when polynomial contrasts are used, that is, when polyno-

mial decomposition of series of scores is performed, the 

condition of compound symmetry is fulfilled. The violation 

of this condition, one of the issues with other forms of con-

trasts in repeated measures ANOVA, is, therefore, not an 
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issue when polynomial contrasts are used. Second, poly-

nomials of different order can be combined. For example, 

adding scores from two polynomials to each other results in 

a curve that has the characteristics of both. 

Polynomial contrasts or, more generally, least squares 

polynomial approximation, can be employed in the present 

context as well. Algorithmically, the contrast scores are 

inserted into the design matrix, one vector per polynomial. 

One parameter is estimated for each polynomial. The re-

sults of this approach are interesting because – unlike in 

standard ANOVA – statements concern not differences in 

means. Instead, statements concern the curvature of the 

series under study. 

Data example. To illustrate polynomial approximation of 

individual series of scores, we continue the example from 

Scenarios 1 and 2. The model equation is 

 

 

where the observed scores are in the column vector on the 

left side of the equation. The first matrix on the right side is 

the design matrix, X. It contains, in its three columns, from 

left to right, the constant vector, the polynomial coefficients 

for the first order polynomial (straight regression line), and 

the coefficients for the second order polynomial (quadratic 

regression line). Least squares estimation of the three pa-

rameters yields the results given in Table 3. 

 

Table 3. 

Polynomial approximation of the data in Figure 1 

Effect Coefficient Standard Error 
Standard 

Coefficient 
Tolerance t p-Value 

b0 1.873 0.172 0.000  10.910 0.058 

bl 0.073 0.077 0.401 1.000 0.949 0.517 

bq 0.331 0.172 0.813 1.000 1.927 0.305 

 

 

The overall model comes with an F-value of 2.308 which, 

for df1 = 2 and df2 = 1, suggests that the portion of varia-

bility accounted for by the two polynomials is 

non-significant (p = 0.422). Note that the multiple R
2
 for 

this model is 0.822. We conclude that the model test and 

the tests for the individual parameters may suffer from in-

sufficient power. This may apply to the model used in Sce-

nario 2 as well. Figure 2 shows how well the composite 

polynomial, that is, the polynomial that contains both the 

linear and the quadratic elements, approximates the data. In 

the third section of this article, we will discuss issues of 

power for the approach to polynomial approximation. 

Note that both Tolerance values in Table 3 are 1.000. 

This indicates that the polynomial coefficients do indeed 

possess the property that neither can be predicted from the 

respective other at all. 

Other models exist that allow one to test hypotheses 

concerning individual series of scores. Standard methods, 

available in most general purpose software packages, are 

usually discussed under the label of coding schemes (for an 

overview, see von Eye & Mun, 2013). Examples of coding 

schemes are used in the next section, in which we discuss 

methods for the comparison of two or more series of 

scores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Mood of Respondent 10 over four years of ob-

servations; linear plus quadratic smoother 
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Comparing two or more series of scores 

 

The simplest possible design that could enable one to 

compare individual series of scores would include two cases 

that serve as the two levels of a Person factor. The second 

factor would represent the repetitions. For the sample case in 

which each of the two cases was observed 4 times, this 

design can be depicted as in Table 4. 

In Table 4, the yij indicate the observed scores. The first 

subscript indicates the case, and the second subscript indi-

cates the observation point. From the perspective of ana-

lyzing data of the form given in Table 4, it is clear that there 

is no within-cell variation. This is unchanged from the three 

scenarios in the previous section. Therefore, not all effects 

can be estimated. This is routine in repeated measures 

ANOVA which usually is programmed so that the high-

est-order interaction is not estimated but used as the residual 

to test the explained portion of variance against. 
 
 

Table 4. 

2 x 4 Repeated Measures Design for two Individuals 

 

Cases 

Observation Points in Time 

T1 T2 T3 T4 

1 y11 y12 y13 y14 

2 y21 y22 y23 y24 

 

 

We now present three scenarios and illustrate them using 

a real data example. The first scenario is the standard re-

peated measures ANOVA for a design as the one in Table 4. 

In the second scenario, we attempt to create a situation, for 

the same design, that allows us to compare the two cases in 

the form of interactions. In the third scenario, we attempt to 

compare the two cases by estimating parameters separately. 

The design matrices for each scenario will be specified. 

For the data example, we use data again from the moth-

er-infant project (MIS; see, e.g., Bogat et al., 2004; 

Huth-Bocks, et al., 2002; https://www.msu.edu/~mis/). 

Here, we analyze the monthly incomes of two families over 

the course of the first four years in the study. The develop-

ment of the income of these two families (labeled as a and 

b) is depicted in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Income Development of Two Families from the 

MIS Study 

 

 

 

 

Scenario 4: Standard repeated measures ANOVA. In 

standard ANOVA, a design matrix as the one given below 

can be used (effects coding, for the distinction between 

MANOVA and repeated measures ANOVA, see Schuster & 

von Eye, 2001). The design matrix is 

 

After the column for the intercept, this matrix contains a 

vector that distinguishes between the two cases. The fol-

lowing three vectors represent the main effect Time. T1, T2, 

and T3 each are compared with T4. The following three 

vectors represent the Time × Case interaction. For each of 

the three Time contrasts, it is asked whether it interacts 

with the cases. That is, it is asked whether the two cases 

differ in their development over time. 

Please note that, in the examples in this article, we use 

effect coding, which has the effect that testing is done 

against the grand mean. Alternatively, dummy coding could 

have been used, for which one case is used as reference. 

The portion of variance exhausted by these two coding 

forms is the same. However, individual vectors represent 

different hypotheses. 

Unfortunately, counting the columns in X1 shows that 

there are eight parameters to be estimated, but there are 

only eight data points. The model thus is saturated. The 

data will be perfectly reproduced. In saturated models, 

https://www.msu.edu/~mis/
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there is no residual to test against. Therefore, in repeated 

measures ANOVAs, the highest-order interaction is used as 

the residual. In the present example, the standard ANOVA 

model will then have 3 degrees of freedom. 

This is illustrated in the data example. Using Income 

as the dependent variable, and Year and Individual as fac-

tors, and without sacrificing the highest order interaction, 

we obtain R
2
 = 1.0, which suggests that all of the variance 

of the dependent measure is explained. The ANOVA output 

table, given below, shows, in Table 5, that the “Error” (that 

is, the residual) is zero and comes with zero degrees of 

freedom. We thus have to either sacrifice effects, fix pa-

rameters, or set parameter estimates equal. Here, we illus-

trate the removal of effects from the model.  
 
 

Table 5. Two-way Repeated Measures ANOVA of the Data in Figure 3 

Source Type III SS df Mean Squares F-Ratio p-Value 

YEAR 8,383,750.000 3 2,794,583.333 . . 

INDIVIDUAL 1,361,250.000 1 1,361,250.000 . . 

YEAR*INDIVIDUAL 3,433,750.000 3 1,144,583.333 . . 

Error 0.000 0 .     

 

 

We now remove the interaction from the model. That is, 

we re-estimate the model without the last three column 

vectors in the above design matrix. The resulting model 

indeed has three degrees of freedom for the residual term, 

and the R
2
 = 0.86 shows that this model still is very good, 

but less than perfect. Differences in the development of the 

income of the two families thus explain 14% of the vari-

ance of the income. 

While evidently estimable, this model comes with two 

problems. First, it has close to no power (see Toothaker, 

Banz, Noble, Camp, & Davis, 1983). None of the estimated 

effect parameters is significant. Second, all we know about 

the differences between the two families is that they explain 

14% of the variance. We are, at this point, unable to make 

statements about the curvature of the development of the 

income itself, nor are we able to quantify statements about 

the differences between the two families. The fifth scenario 

is a first attempt at making these statements. 

Scenario 5: Polynomial approximation. In the fifth sce-

nario, we approximate the series of income figures using 

orthogonal polynomials, and we ask whether the two fami-

lies differ in the polynomials. For four observation points, 

polynomials of order up to three can be estimated. Coeffi-

cients for orthogonal polynomials can be found in tables of 

ANOVA textbooks (e.g., Kirk, 1995, Table E10) or on the 

Internet (e.g., http://www.watpon.com/table/polynomial.pdf). In 

many software packages, these coefficients are calculated 

for the user. The design matrix for this approach is 

 

 

 

The first two column vectors in this design matrix are 

identical to the ones used in the fourth scenario. The third 

vector represents the linear trend hypothesis. The next vec-

tor represents the quadratic trend, and the fifth vector rep-

resents the cubic trend. The last three vectors in X2 repre-

sent the interaction terms between case and the three trends. 

If estimable, they allow one to answer the question whether 

the two cases differ in their trend characteristics. 

Unfortunately, the design matrix for the second scenario 

also has eight column vectors. Therefore, it is also saturated. 

Again, we are in a situation in which we have to make de-

cisions about which effect to drop (or to fix or set equal). 

Suppose we decide that the third order polynomial is not 

needed to describe the development of income. We, there-

fore, drop the fifth through the last vectors from X2. The 

resulting R
2
 = 0.62 suggests that we assigned 38% of the 

variance of the series of income figures to the residual. Of 

the parameters of the resulting model, none is significant, 

and neither is the effect of all parameters combined. 

Re-inserting the third order polynomial and removing the 

first order polynomial instead increases the explained por-

tion of variance to 80%, but still none of the parameters or 

the model is significant. 

We now try to get closer to explaining the differences in 

income between the two families by removing just one of 

the interactions. Figure 3 suggests that the differences in 

curvature may be greater than the differences in the linear 

trend. Both families' incomes increase over the entire ob-

servation period, on average. The curve with the 'x' labels, 

however seems to show a strong quadratic trend, which is 

absent in the curve with the 'o' labels. We, therefore decide 

to test the hypothesis that the two curves differ only in cur-

vature, but not in linear trend. To test this hypothesis, we 

estimate a model that only includes the interaction between 

the family factor and the quadratic polynomial, but none of 

the other interactions of Family and Polynomial. Table 6 

displays the results of this run. 

http://www.watpon.com/table/polynomial.pdf
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Table 6 

Approximating the Income Development of Two Families; Only Hypothesis of Curvature Differences Included 

Effect Coefficient Standard Error 
Standard 

Coefficient 
Tolerance t p-Value 

CONSTANT 2,837.500 359.905 0.000 . 7.884 0.016 

Family -412.500 359.905 -0.321 1.000 -1.146 0.370 

1
st
 Order Polynomial 257.500 160.954 0.449 1.000 1.600 0.251 

2
nd

 Order Polynomial -587.500 359.905 -0.458 1.000 -1.632 0.244 

Family x 2
nd

 Order 

Polynomial 
412.500 359.905 0.321 1.000 1.146 0.370 

3
rd

 Order Polynomial -272.500 160.954 -0.475 1.000 -1.693 0.233 

 

 

 

The multiple R
2
 for the model estimated for Table 6 is 

0.843. That is, we explain a substantial portion of the varia-

tion in income, but again, none of the estimated parameters 

seems to differ from zero. As before, we suspect that we 

suffer from lack of power. However, as was discussed when 

analyzing individual series of scores, possible problems 

with compound symmetry should not be an issue because 

the polynomials capture the serial dependency of the in-

come measures. 

In addition, it should be noted again that all the Toler-

ance scores are 1.0, indicating that the polynomial coeffi-

cients as well as the interactions that involve these coeffi-

cients are orthogonal. For the next scenario, we adopt a 

different perspective of the hypotheses that can be tested. 

Scenario 6: Separate parameter estimation. Assuming 

that some of the trend parameters of the model under the 

second scenario can be estimated, and assuming that there 

are hints suggesting the two cases differ in the development 

of their monthly income, one might ask for a separate esti-

mate of the individual parameters for the two cases. Design 

matrix X3 allows one to estimate case-specific parameters. 

 

The first two column vectors in X3 are the same as in X1 

and X2. The third vector represents the linear trend for Case 

1. The fourth vector does the same, but for Case 2. The 

following two vectors represent the quadratic trend for 

Cases 1 and 2, and the last two vectors represent the cubic 

trend, also separately for the two cases. 

As for the first two cases, using the complete design ma-

trix X3 results in a saturated model. 100% of the variance of 

income are explained and there is no residual left to test the 

null hypotheses that each of the parameters is zero. Re-

moving the cubic trends results in an R
2
 = 0.62 which is the 

same as in the second scenario, also after removing the 

cubic trend. Also as before, none of the parameters is sig-

nificant, and neither is the model as a whole. The 

case-specific parameters differ numerically (in particular 

the standardized parameters for the quadratic trend seem to 

differ; they are -0.09 for Family 1 and -0.55 for Family 2), 

but, for lack of power, we are unable to determine whether 

they differ statistically. 

As in Scenario 5, we now could remove specific vectors 

and, thus, constrain the hypotheses that are tested. However, 

we do not illustrate these options, because the results would 

be very similar to the ones obtained under Scenario 5. The 

R
2
 would be high, but none of the effect parameters would 

be significant. The next section, on the power of single 

subject designs and designs in which individuals are com-

pared, will shed light on this issue. 

Simulation: The Power of Polynomial 

Approximation 

In the following section, we present results of a Mon-

te-Carlo simulation experiment. The simulation was con-

ducted to analyze the necessary number of time points 

needed to ensure sufficient power of the overall ANOVA 

F-test and the t-tests associated with the estimated effects in 

a person-oriented context. In the simulation study, we focus 

on intensive longitudinal data scenarios, that is, repeated 

measures which are typically collected over a span of more 

than just a handful of time points (Walls & Schafer, 2006). 

Two simulation experiments are realized: First, we study 

the Type I error and power performance of the GLM 

(ANOVA) in the single-subject design (i.e., n = 1). Second, 

we study Type I error and power performance of the 

ANOVA when comparing two series of scores (i.e., n = 2).  
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Single-subject design 

 

All simulations were performed using the R statistical 

environment (R Core Team, 2014). Data were generated 

according to the population model  

 

The variables denote orthogonal polynomial 

contrasts up to the fifth order, i.e., the population model 

consists of a linear, a quadratic, a cubic, a quartic, and a 

quintic term. Orthogonal polynomials were generated using 

the R built-in function contr.poly(). The intercept, , was 

fixed at zero and the error term, , was randomly sampled 

from the standard normal distribution. Because effects in 

the model are independent of each other, we restricted the 

simulation experiment to the case of equal effect sizes 

across regression terms, i.e., . 

Regression weights were = 0, 1, 2, and 4 (p = 1, …, 5). 

For = 0, no decisions concerning change over time can 

be made. This case served as a benchmark to evaluate the 

Type I error robustness of the ANOVA in single-subject 

designs. Further, > 0 refers to the statistical power of 

the ANOVA. The numbers of time points were T = 7, 15,... 

(8) …, 87, and 95. Figure 4 shows the simulated trends of Y 

for 50 measurement occasions. The simulation factors were 

crossed, which resulted in 4 (effect size ) × 12 (time 

points T) = 48 experimental conditions. For each condition, 

5000 samples with n = 1 were generated and significance of 

the overall ANOVA F-test and significance of polynomial 

contrasts were evaluated using the GLM approach dis-

cussed above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Population single-subject models for T = 50 re-

peated measurements as a function of effect sizes. 

 
Table 7 shows the empirical frequencies of rejecting the 

null hypothesis for the overall F-test as a function of effect 

size and number of simulated time points. For  = 0, the 

rejection rates are close to the nominal significance level of 

5%, and fall within Bradley's (1978) strict robustness in-

terval of 4 – 6%. Cases of  > 0 depict the power of the 

ANOVA F-test. In general, power increases with effect size 

and number of measurement occasions, as expected. Most 

important, for  > 0, a rapid increase in power is ob-

served for T = 7 – 39, while further increasing the number 

of time points beyond T = 39 has a relatively small impact 

on the power of the F-test. In other words, information be-

yond 39 repeated measurements does not substantially im-

prove the power of the test. 

 

Table 7. 

Relative frequencies of rejecting the null hypothesis for the overall ANOVA F-tests in case of single-subject designs. 

Time points (T) = 0 = 1 = 2 = 4 

7 0.056 0.074 0.118 0.213 

15 0.045 0.232 0.744 1.000 

23 0.043 0.266 0.862 1.000 

31 0.049 0.299 0.891 1.000 

39 0.053 0.310 0.907 1.000 

47 0.049 0.320 0.916 1.000 

55 0.055 0.331 0.924 1.000 

63 0.050 0.335 0.930 1.000 

71 0.049 0.330 0.933 1.000 

79 0.047 0.337 0.933 1.000 

87 0.051 0.348 0.945 1.000 

95 0.050 0.333 0.937 1.000 
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Next, we ask questions concerning the power of the t-tests 

associated with the orthogonal polynomial contrasts 

(X1,…,X5). Figure 5 shows the empirical power curves for the 

five t-tests (one test for each polynomial contrast) as a 

function of effect size ( ) and number of repeated meas-

urements (T). Power curves for the five tests are virtually 

identical because β1 = β2 = … = β5 .  Again, = 0 refers to 

the empirical Type I error rates which are close to 5% re-

gardless of number of time points. Using more than T = 31 

points in time does not increase the power of the t-tests. For 

very large effects (i.e.,  = 4), T = 15 measurement occa-

sions are sufficient to guarantee acceptable power rates

 

Figure 5. Relative frequencies of rejecting the null hypothesis of separate t-tests as a function of effect sizes and the number 

of repeated measurements for the single-subject design. 

 

Finally, Figure 6 shows the average R² values of the ANOVA 

models as a function effect size and number of measurement 

occasions. Two effects can be observed. First, R² values 

increase with , as expected. Second, average R² values 

decrease with the number of measurement occasions. This 

result can be explained by the fact that the portion of unex-

plained variance increases with the length of the series.
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Figure 6. Average R² values as a function of effect size and number of measurement occasions for the single-subject design.  

 

 

Comparison of two series of scores 

 

We now ask questions concerning the power of ANOVA 

for the question whether two individuals (i.e., n = 2) differ in 

their trajectories. Data were generated according to the true 

model  

 

 
 

In other words, the design matrix consisted of 12 columns, 

i.e., a constant vector (representing the intercept β0), a vec-

tor S consisting of the values 0 and 1 representing the two 

subjects (with βS being the subject effect), five columns 

representing the orthogonal polynomial contrasts (with  

(p = 1,…,5) being the slopes of the five polynomial con-

trasts), and five columns defining the Subject × Time inter-

actions. Again, the intercept was fixed at β0 = 0 and the 

slope parameters (i.e., βS  = βp = βSp with p = 1,...,5) were 

fixed at 0, 1, 2, and 4. βS  = βp = βSp = 0 refers to the Type 

I error performance of the ANOVA, βS  = βp = βSp > 0 re-

fers to the power of the ANOVA. The numbers of repeated 

measurements were T = 7, 15,... (8) …, 87, and 95. As in 

the first simulation, the simulation factors were crossed 

which resulted in 4 (effect size βp) × 12 (time points T) = 

48 experimental conditions, and for each condition, 5000 

samples were generated. Statistical decisions (i.e., retaining 

or rejecting the null hypothesis) were based on a nominal 

significance level of 5%. Figure 7 shows the population 

trajectories for both subjects using 50 measurement occa-

sions. 
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Figure 7. Population model for the comparison of two series of scores (case A versus case B) for T = 50 measurement oc-

casions as a function of effect size. 

 

 

Table 8 shows the portion of rejected null hypotheses for 

the overall ANOVA F-test. For zero effects, the rejection 

rates are close to the nominal significance level of 5%. 

Empirical Type I error rates are within Bradley's (1978) 

strict robustness interval. Further, for βp ≥ 1, 15 time points 

are sufficient to achieve a power larger than 80% which is 

considered acceptable for the behavioral and social sciences 

(Cohen, 1988).

 

 

Table 8 

Relative frequencies of rejecting the null hypothesis for the overall ANOVA F-tests when comparing two series of scores. 

Time points (T) βp = 0 βp = 1 βp = 2 βp = 4 

7 0.046 0.165 0.435 0.885 

15 0.047 0.884 1.000 1.000 

23 0.049 0.968 1.000 1.000 

31 0.048 0.990 1.000 1.000 

39 0.050 0.997 1.000 1.000 

47 0.047 0.999 1.000 1.000 

55 0.048 1.000 1.000 1.000 

63 0.046 1.000 1.000 1.000 

71 0.046 1.000 1.000 1.000 

79 0.048 1.000 1.000 1.000 

87 0.051 1.000 1.000 1.000 

95 0.049 1.000 1.000 1.000 
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Next, we analyzed the empirical power curves of the 

t-tests for the polynomial contrasts. We were particularly 

interested in empirical power curves for the interaction hy-

potheses (the power curves for the main effects of the or-

thogonal polynomial contrasts were virtually identical to 

those given in the single-subject case; see Figure 4). Figure 8 

shows the portion of rejected null hypotheses for the Subject 

× Time interactions. All t-tests keep the nominal signifi-

cance level of 5% when βSp = 0. Except for very large ef-

fects (βSp = 4), the power of the t-tests is rather low. Most 

important, increasing the number of measurement occasions 

beyond T = 15 does not affect the power of the tests. 
 

 

 

Figure 8. Relative frequencies of rejecting the null hypotheses for testing Subject × Time interactions as a function of effect 

size and number of repeated measurements.  

 

 

Finally, Figure 9 shows the average R² values obtained 

from the generated series of scores. Again, the portion of 

explained variance increases with the effect size and de-

creases with the number of time points. The latter effect can 

again be explained by the fact that longer series induce 

larger portions of unexplained variability.
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Figure 9. Average R² values as a function of effects sizes and number of repeated measurements when comparing two series 

of scores 

 

 

Discussion 

There are many points of discussion that can be elabo-

rated based on the six scenarios illustrated above and the 

simulation results. Three points stand out. The first is most 

important from the perspective of person-oriented research: 

it is possible to estimate individual-specific parameters 

using such GLM methods as repeated measures ANOVA 

and regression. Not only can one ask for parameters that 

describe individual development, one can also ask whether 

individuals differ in parameters. These parameters can be 

standard ANOVA contrast parameters, but they can also 

describe trends and such characteristics of trends as linear, 

quadratic, or cubic curvature. When trends are estimated, 

problems with serial dependency will not arise. In either 

case, the trajectories of individuals can be compared, but 

also the trajectories of groups of individuals, and 

once-observed factors and covariates can be made part of 

an analysis. 

The simulation results suggest that there is sufficient 

power when the number of observation points is 15 or 

higher for single subject designs. For the comparison of 

two individuals, sufficient power begins at 15 observations 

as well but effects must be stronger. This result mirrors the 

well-known ANOVA characteristic that there is more power 

for main effects than for interactions. 

The second point of importance is related to the first. As 

in standard repeated measures ANOVA, not all parameters 

of interest may be testable in a single run. Therefore, for 

each run, researchers have to make decisions about how to 

create degrees of freedom. Parameters can be fixed, set 

equal, effects can be removed from a model, or any combi-

nation of these can be considered. In standard repeated 

measures ANOVA, the highest-level interaction is removed 

from the model (most ANOVA software packages do this 

without even asking the user). Here, we illustrated that oth-

er options exist. 

The third point that became obvious is that power can be 

minimal, in particular when the number of observation 

points is small. We therefore ask how power can be im-
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proved. In von Eye and Bogat’s (2004) discussion of the 

use of ANOVA in person-oriented research, one answer was 

given by operating at the aggregate level, that is, by creat-

ing groups of cases. Here, we suggest also considering in-

creasing the length of the series of measures, thus moving 

in the direction of creating intensive longitudinal data 

(Walls & Schafer, 2006) or beyond. This issue was detailed 

in the simulations presented in the preceding section of this 

article. Results of the simulations suggest that power rap-

idly increases with the length of the series. However, in all 

scenarios, we also found ceiling effects. That is, increasing 

the length of a series beyond a critical number of observa-

tion points will not further increase power. 

Finally, and most important in the context of repeated 

observations, the issue of dimensional identity (von Eye & 

Bergman, 2003) needs to be considered. When observa-

tional studies are conducted or the same questions are pre-

sented repeatedly, the same behavior and the same question 

may change in meaning over the course of a study. The 

semantic space, for example, that adolescents use to answer 

the question why they smoke can be different than the se-

mantic space the same individuals use when they answer 

the same question 10 years later. Therefore, the answers to 

this question may not be quantitatively comparable over 

time. Series of scores to answers to questions that can 

change meaning over time may not be interpretable. All this 

may be less of an issue when physiological measures such 

as brain waves, blood pressure, or hormone level are rec-

orded over time. 

Therefore, a necessary condition for meaningful analysis 

of series of scores is that dimensional identity obtains. In 

other words, the scales that are used for repeated observa-

tions must have the same psychometric and semantic char-

acteristics at each observation point and for each respondent. 
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