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Abstract: Lag analysis can be used to inspect stability and change of behavior over a pre-determined time interval, the
lag. In the analysis of metric variables, lag analysis is well known and used to identify such temporal effects as seasonal
trends. In the analysis of categorical variables, the same can be done. Either approach can be employed in the analysis of
both aggregated and individual data. In the domain of studying individual cells of contingency tables, that is, in configural
analysis, only two sources exist in which lag analysis is discussed (von Eye, Mair, & Mun, 2010; von Eye & Mun, 2012).
In this paper, we place the method of configural lag analysis in a person-oriented context and propose new variants for
the comparison of individuals. Three approaches are considered. The first involves searching for configural types and
antitypes separately for the comparison individuals. The second approach can be viewed parallel to two- or multiple group
Configural Frequency Analysis. Both approaches are presented within a log-linear framework. Configural base models are
specified for the original configural lag method as well as the extended comparative methods, and questions are defined
that can be answered using configural lag analysis. The third approach allows researchers to test hypotheses concerning
groups of cells. In an empirical example, data are analyzed from a study on the development of drinking behavior in
alcoholics. Further extensions and alternative methods of analysis are discussed.
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Introduction

Configural Frequency Analysis (CFA; Lienert, 1969; von
Eye & Gutiérrez-Peña, 2004; von Eye et al., 2010) is used
when researchers ask whether patterns of categorical vari-
ables are observed at rates that differ from those expected
under a particular probability model, the base model (von
Eye, 2004). Base models are specified so that only the ef-
fects the researchers are interested in can be the reasons
why individual patterns are observed at unexpected rates.

CFA is considered among the prime methods of analysis
in person-oriented research (Bergman & Magnusson, 1997;
Bergman, Magnusson, & El-Khouri, 2003; Bergman, von
Eye, & Magnusson, 2006; von Eye & Bergman, 2003). It

has also been discussed in the context of Molenaar’s (2004)
idiographic research (von Eye, Bergman, & Hsieh, 2015).
Interestingly, the methods of CFA developed so far (von
Eye, 2002a) are not only rooted in the family of methods
of the Generalized Linear Model (predominantly used in a
variable-oriented context). They are also methods that usu-
ally result in statements about individuals or groups of in-
dividuals (for the few approaches that represent exceptions
to this rule, see von Eye, 2002a; von Eye et al., 2010). Idio-
graphic and person-oriented research focus on the individ-
ual. In fact, it is recommended that, in longitudinal, devel-
opmental research, parameters be, before aggregation, esti-
mated first at the level of individuals (Molenaar, 2004; von
Eye et al., 2015). In other words, developmental research,

64

http://www.person-research.org
mailto:voneye@msu.edu


Journal of Person-Oriented Research 2016, 2(1–2), 64–77.

which is mostly longitudinal, focuses first on intraindivid-
ual change and interindividual differences in intraindividual
change (cf. Baltes, Reese, & Nesselroade, 1977). Aggrega-
tion, if desired, is then performed based on parameters, not
raw scores.

There exist two configural approaches to analyze data
from individuals with CFA. These are within-individual CFA
(von Eye, 2002a) and configural lag analysis (von Eye et al.,
2010; von Eye & Mun, 2012). The first element of person-
oriented research, the description of individuals, can, thus,
be accomplished using configural methods.

Before aggregation can be justified, individuals must
be compared. Groups of individuals can be created only
if the individuals’ scores differ only randomly from each
other. Similarly, individuals can be declared members of
pre-existing groups only if the individuals’ scores differ
no more than randomly from scores that describe these
groups. When systematic differences exist between profiles
of an individual and a group, the membership of these indi-
viduals and a group can be doubtful. Oddly, almost no con-
figural methods have been proposed for the comparison of
individuals (a first attempt can be found in von Eye & Mun,
2012). This type of methods would allow one to make de-
cisions in the context of the second step of person-oriented
analysis, the aggregation step. This step is performed to
determine whether individuals differ in intraindividual de-
velopment, that is, whether there exist interindividual dif-
ferences in intraindividual change (von Eye & Mun, 2012).
In this article, we discuss existing configural methods for
the description of individuals, and propose extending them
with the goal of creating methods that allow one to make
statements about interindividual differences in intraindi-
vidual change.

Standard CFA analyzes groups of individuals. These are
the individuals that constitute the entries in the cells of
cross-classifications. To arrive at statements about individ-
uals, the unit of analysis can no longer be the number of
respondents in cells of tables. Instead, the unit of analysis
must be the number of responses provided by an individ-
ual. In other words, the cell counts in CFA of individuals
represent the individual’s responses, not the number of in-
dividuals. To arrive at statements about interindividual dif-
ferences in intraindividual development, responses must be
available from two or more individuals. This article is con-
cerned with configural methods of analysis for this type of
data.

This article is structured as follows. We first present
a brief review of CFA (for more detail, see von Eye &
Gutiérrez-Peña, 2004; von Eye, 2002a). We then review
the method of configural lag analysis. In the central part of
this article, we extend this method so that individuals can
be compared. Three approaches will be discussed. For each
of these three approaches, CFA base models are specified.
The article concludes with an empirical data example and
a discussion section.

Configural Frequency Analysis – A Re-
view

In this section, we start from the Generalized Linear Model
(GLM; Nelder & Wedderburn, 1972; McCullagh & Nelder,
1983). We then embed log-linear modeling and CFA in the
context of the GLM, and discuss goals of analysis. The Gen-
eralized Linear Model can be described as an extension of
the General Linear Model. The latter is

µ=
∑p

j
β j x j ,

where µ is a vector of means, the x j ( j = 1, . . . , p) are in-
dicator variables, predictors, independent variables, or, in
general, covariates, and the βs are the parameters whose
values, usually, must be estimated. Now, let i be the in-
dex for cases. Then, the systematic part of the GLM can be
expressed as

E(Yi) = µi =
∑p

j
β j x i j ,

for, i = 1, . . . , N , the sample size, or, in matrix notation,

µ= Xβ ,

where X is the model matrix, aka design matrix, and β is
the parameter vector. The generalization of the General
Linear Model involves the following three elements. First,
the element E(Y ) = µ is a convolution of the random com-
ponent of the model, ε, and the systematic part, Xβ . In
special cases, Y is independently normally distributed, with
constant variance, σ2. Second, the systematic part of the
model creates a linear predictor η,

η=
∑

β j x j .

The third element connects the systematic and the ran-
dom elements of the model by

ηi = g(µi).

The form g(.) is termed the link function. When g(.)
is specified such that one obtains µ = η, this case is well
known from linear regression analysis and analysis of vari-
ance, the link function is the identity function. Any mono-
tonic differentiable function can be considered as a link
function. As discussed in von Eye and Mun (2013), for log-
frequency models, the natural link function is the logarithm
of the cell frequencies. One obtains

log(m) = Xλ+ ε,

where m is the vector of observed cell frequencies, λ is the
parameter vector, ε is the vector of model-specific residuals,
and X is the matrix of covariates (predictors, independent
variables, factors).

The goal of modeling is usually to arrive at a model that

1. reflects the underlying data generation mechanisms,

2. describes the data at hand satisfactorily, and
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3. is parsimonious.

If a model possesses these characteristics, the residuals,
εi , which indicate the discrepancies between the estimated
cell frequencies, m̂i , and the observed cell frequencies, mi ,
are random. The resulting statements are expressed in
terms of relations among variables (effects). All of these
are represented by the vectors of X , the design matrix.

From a person-oriented perspective, it is worth noting
that these statements usually do not describe individuals
or, in general, the data carriers. Most research follows
the variable-oriented perspective. That is, variable rela-
tions are targeted, and data carriers are random, replace-
able with no more than random consequences for model
fit or magnitude of parameters. In other words, if a sam-
ple that is representative of some population is replaced by
an independent, also representative sample, the resulting
model will be largely the same.

In contrast, CFA targets individuals or groups of individ-
uals. Using CFA, researchers aim at making statements that
describe subgroups of data carriers, and the variables are
no more than a random selection of measures. Other mea-
sures of equal validity (reflecting the same construct of in-
terest) are assumed to result in largely the same statements.
To arrive at statements about individuals or groups of indi-
viduals, CFA adopts a strategy that differs from that used
for fitting models such as log-linear models. Specifically,
researchers first specify those effects that are of interest.
Examples of such effects are main effects, interactions, or
planned contrasts, just as in ANOVA or log-linear model-
ing. Based on these effects, researchers create the CFA base
model. Most CFA base models are of the form given above
for log-linear models, that is, log(m) = Xλ+ ε. However,
and this is specific to CFA, not all possible log-linear models
qualify as CFA base models. Instead, log-linear (and other)
models can be used as CFA base models only if they have
the following characteristics (von Eye, 2004):

1. it indicates the probability with which a pattern of cat-
egories of the variables is expected to occur that span
the cross-classification under study;

2. it takes all effects into account that are not of interest
to the researchers; and

3. there is only one way to interpret discrepancies be-
tween estimated and observed cell frequencies: they
reflect the effects of interest.

If individual patterns of categories (these patterns are
called configurations) are observed at unexpected rates,
only the effects of interest can be the causes for these
discrepancies. This strategy corresponds to a Popperian
(1959) perspective, according to which rejecting false
propositions eventually leads to correct statements. In con-
trast to standard null hypothesis testing, however, and also
in contrast to standard falsificationism, the strategy used
in CFA results in a finite set of hypotheses, all of which
the researchers can be interested in. The maximum num-
ber of these hypotheses is given by the number of cells in
a cross-classification. Follow-up analyses can then be em-
ployed to identify the specific effects that exist and cause

the discrepancies. Examples of follow-up analyses include
variable-oriented log-linear modeling (von Eye et al., 2010)
and person-oriented CFA (von Eye & Mair, 2008b, 2008a).

Procedurally, CFA proceeds in the following steps (von
Eye et al., 2010). First, a base model is specified that pos-
sesses the above three characteristics. Most, but not all,
CFA base models can be expressed as log-frequency models.
Second, this model is estimated and model fit is evaluated.
This part of the analysis is equivalent to standard log-linear
model estimation (von Eye & Mun, 2013). However, find-
ing the best fitting model is not the goal of configural anal-
ysis. Instead, one specifies a base model in the hope that it
does not fit. Only if the base model fails to describe the data
well, CFA continues. If the base model provides satisfactory
model-data correspondence, none of the effects of interest
exists, and the search for individual cells that deviate from
expectancy is pointless.

In the third step, performed only after the base model
fails, CFA null hypotheses are tested, usually for each cell of
the cross-classification. The CFA null hypothesis states that,
for each configuration, that is, in each cell, the difference
between the expected and the observed frequencies is no
greater than random. Specifically, the CFA null hypothesis
states that

H0 : E[mr] = m̂r

where E[mr] is the expectancy for Cell r, where r in-
dexes the cells of a cross-classification, and m̂r is the esti-
mated expected frequency for Cell r under a base model.
Testing this null hypothesis results in one of three possible
outcomes: CFA Type, Neither Type nor Antitype, and CFA
Antitype. A cell constitutes a CFA type when the null hy-
pothesis is rejected because the probability of mr is

BN ,πr
(mr − 1)≥ 1−α,

where N is the sample size, πr is the probability of Cell r
under the base model, and mr is the observed frequency of
cell r (below, we describe BN ,πr

as a binomial probability).
In other words, one can say that Cell r constitutes a CFA
type when the null hypothesis is rejected because Cell r
contains more cases than expected. Alternatively, the null
hypothesis is rejected because

BN ,πr
(mr)≤ α,

In other words, the null hypothesis can also be rejected
because Cell r contains fewer cases than expected under a
base model. In this case, Cell r is said to constitute a CFA
antitype. When the null hypothesis prevails, the number of
cases in Cell r is consistent with the base model.

Each of these tests is conducted under protection of the
significance threshold α. Protection is of great importance
in CFA because of the large number of significance tests.
In exploratory CFA, all cells of a table are subjected to a
null hypothesis test. The most popular tests include the
binomial test and the z-test. For the binomial test, let mr
denote the observed frequency of Cell r. Then, the exact
tail probability of mr and more extreme frequencies is

Br(mr) =
l
∑

j=a

�

N
j

�

p jqN− j ,
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where q = 1− p, a = 0 if mr < m̂r and a = mr if mr ≥ m̂r ,
k = mr if a = 0 and l = N if a = mr . With the exception of
the rare cases in which the value p is known a priori, it is
estimated from the sample. When the binomial test is used,
CFA types emerge if

Br(mr − 1) =
l
∑

j=a

�

N
j

�

p jqN− j ≥ 1−α,

and antitypes emerge, if

Br(mr) =
l
∑

j=a

�

N
j

�

p jqN− j < α.

For the binomial test, the probabilities of the observed
and each more extreme frequency are calculated and added
to the total. There is no need to assume that any theoretical
distribution is reasonably approximated. The binomial test
is exact. This test is recommended when a sample is so
small that the approximation properties of approximative
tests are doubtful.

The most popular approximative test is the standard nor-
mal z-test,

z =
mr − N p
p

N pq
.

Both, the binomial test and the z-test can be applied un-
der any sampling scheme. More specifically, the multino-
mial and the product-multinomial sampling schemes do not
require that a different test than the binomial or the z-test
be used. Other CFA tests are valid only under specific sam-
pling schemes (for more detail on the protection of α and
for more CFA tests and their characteristics, see von Eye,
2002a).

In the following sections, we discuss CFA of lags (cf. von
Eye et al., 2010), the comparison of lag types and antitypes
of individuals (von Eye & Mun, 2012), and we propose ex-
tensions of these methods.

CFA of Lags

In standard, cross-sectional data sets, the order of obser-
vations usually carries no information. Whether Individual
i’s data are listed before Individual j’s data or after is of
no importance and has no implications for the results of
data analysis. The same applies to longitudinal CFA. In this
approach, however, the temporal order of data is of impor-
tance. Consider, for example, the data in Table 1. The first
row of Table 1 (labeled with “Day”) displays the number of
beers an alcoholic has consumed on ten consecutive days.

For Days 2 through 10, we ask, how many beers the same
individual had consumed on the day before. This informa-
tion appears in the second row (“Day Before”) of data of
Table 1. The data in the second row are called the lag-1
data. The number of beers consumed two days before ap-
pears in the third row of data (“2 Days Before”). These data
are called lag-2 data. Lag-2 data are the lag-1 data of lag-
1 data. Expressed differently, lag-1 data are shifted back

Table 1. Beer Consumption of an individual (artificial data)

Number of
Beers

Day

1 2 3 4 5 6 7 8 9 10

Day 2 2 5 3 5 5 3 1 5 4

Day Before 2 2 5 3 5 5 3 1 5

2 Days Before 2 2 5 3 5 5 3 1

one day, and lag-2 data are shifted back 2 days. Let X t be
the observed data. Using the backshift operator, one creates
lagged data. For example, lag-1 data are created by

B(x t) = X t−1;

and lag-2 data are created by

B(x t−1) = X t−2.

The original data, x t , and the lagged data, X t−i , can be
subjected to various forms of statistical analysis. For exam-
ple, one can ask whether the original data and the lag-7
data are correlated. In the example given in Table 1, this
would correspond to the question whether particular days
in a week are correlated with the number of beers this alco-
holic individual consumes seven days before. Other ques-
tions concern the detection of seasonal trends in tempera-
ture or monthly trends in car sales.

Configural analysis allows one to answer these and other
questions in the space of categorical variables, at the level
of individual patterns. This is performed, in the simplest
case, by crossing series that are shifted by a lag of l time
points (here, j is used to index the original series of scores,
and j′ is used to index the shifted series of scores). To ex-
plain, let X t, j be category j of a categorical variable that was
observed a point in time t. Let X t−l, j′ be the same category
of the same variable, but shifted by a lag of l points in time.
Then, Cell [X t, j , X t−l, j′] of the X t × X t−1 cross-classification
contains the number of observations for Category j at the
first occasion that is followed by Category j′, at the lth oc-
casion before.

In the context of configural analysis, there are two CFA
base models that can be estimated for a X t × X t−l cross-
classification. The first is the null model, log m = λ + ε.
The second model is that of variable independence. This
is the main effect model, log m = λ+ λX t + λX t−l + ε. The
interpretation of these models is discussed in the follow-
ing section. When more lagged variables are considered
or when information such as stratification or demographic
variables is taken into account, more complex base models
can be considered, e.g., prediction CFA. We now illustrate
the use of lag CFA.

Data Example. To illustrate lag CFA, we use data from
a longitudinal study of self-identified alcoholics (Perrine,
Mundt, Searles, & Lester, 1995). A sample of alcoholic
adult men provided every morning information about their
drinking, as well as their subjective ratings of mood, health,
and quality of the day before the interview. Here, we ask
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whether associations exist between the number of standard
size beers consumed on the same day of the week for con-
secutive weeks, that is, for a lag of seven days. In other
words, we set the shift operator to B(x t) = x t−7. We use
the data from Respondent 3004. The range of the numbers
of beers consumed by Respondent 3004 was wide. Even
extremely high numbers are frequently reported. We nev-
ertheless condensed this scale to range from 0 = no beer
consumed through 5= five or more beers consumed in one
day. The main reason for condensing the scale this way
is that other respondents reported fewer extreme numbers
consumed at one occasion. Using the scale with scores from
0 through 5 makes it, therefore, easier to compare respon-
dents. We will use these data for the other examples in this
article as well. Respondent 3004 provided data for 742 con-
secutive days. Because of the lag of 7 days, the lagged series
contains data from 735 days. This respondent as well as all
others started answering the phone interview questions on
a Monday. Thus, the first reported day in the series is a
Sunday.

The cross-classification of the original beer consumption
figures with the ones from seven days before, was subjected
to CFA. Because there are only two variables in the analysis,
the number of possible base models is small. Based on the
variables that span the cross-classification, that is, not con-
sidering possible covariates or special effects and excluding
the saturated model, there are four possible base models.
These models are

1. log m = λ+ ε; this model is used for what was called
Configural Cluster Analysis (Lienert & von Eye, 1989);

2. log m= λ+λX t + ε;

3. log m= λ+λX t−7+ε; types and antitypes from the sec-
ond and the third models are hard to interpret; they
would indicate that there exist either the main effects
of the variable whose main effect is not included or the
interaction between the two series; considering that
the two shifted series contain largely the same data,
the first element of this interpretation seems implau-
sible; therefore, we do not consider these models suit-
able base models for lag CFA;

4. log m = λ+ λX t + λX t−7 + ε; types and antitypes from
this base model indicate local associations between the
lagged observations (Havránek & Lienert, 1984).

The first of these four models is the null model. It posits
that there are only random local deviations from a uni-
form distribution. This model would answer the question
whether there are local density centers (types) or sparsely
populated sectors (antitypes) in the space spanned by X t
and X t−7. Types and antitypes could be caused by main
effects of either variable or the interaction X t × X t−7. In
the present example, we ask whether there are local asso-
ciations, regardless of possibly existing main effects. This
question can be answered by estimating the fourth of the
possible models. This is the model of variable indepen-
dence, also called the main effect model. If this model
fails and CFA results in types and antitypes, the question

concerning local associations can be considered answered
based on the types and antitypes.

Thus, we estimated the model of independence of the
two observation series. For the cell-wise CFA tests, we set
the significance level to α = 0.05, and we used the z-test
and the Holland and Copenhaver (1987) α protection. Ta-
ble 2 displays the results of this analysis.

Table 2. First order CFA of beer consumption of Respondent 3004
with a lag of seven days.

Configuration
X t X t−7 m m̂ z p

0 0 85.00 25.165 11.9279 .000000 T
0 1 15.00 5.921 3.7311 .000095 T
0 2 16.00 6.661 3.6184 .000148 T
0 3 8.00 5.181 1.2385 .107765
0 4 3.00 7.771 -1.7116 .043487
0 5 9.00 85.301 -8.2614 .000000 A
1 0 18.00 5.921 4.9639 .000000 T
1 1 3.00 1.393 1.3613 .086708
1 2 5.00 1.567 2.7419 .003055
1 3 2.00 1.219 .7073 .239685
1 4 .00 1.829 -1.3522 .088148
1 5 4.00 20.071 -3.5872 .000167 A
2 0 13.00 6.846 2.3519 .009340
2 1 7.00 1.611 4.2461 .000011 T
2 2 1.00 1.812 -.6034 .273134
2 3 1.00 1.410 -.3449 .365070
2 4 5.00 2.114 1.9846 .023595
2 5 10.00 23.207 -2.7415 .003058
3 0 9.00 5.551 1.4639 .071614
3 1 3.00 1.306 1.4821 .069151
3 2 2.00 1.469 .4377 .330790
3 3 3.00 1.143 1.7372 .041176
3 4 2.00 1.714 .2182 .413630
3 5 11.00 18.816 -1.8019 .035779
4 0 3.00 7.956 -1.7572 .039445
4 1 .00 1.872 -1.3683 .085617
4 2 .00 2.106 -1.4512 .073355
4 3 3.00 1.638 1.0641 .143645
4 4 3.00 2.457 .3463 .364553
4 5 34.00 26.970 1.3537 .087922
5 0 8.00 84.561 -8.3257 .000000 A
5 1 4.00 19.897 -3.5638 .000183 A
5 2 12.00 22.384 -2.1948 .014091
5 3 11.00 17.410 -1.5361 .062251
5 4 29.00 26.114 .5647 .286140
5 5 393.00 286.635 6.2825 .000000 T

Note. T = Type, A = Antitype;

The overall goodness-of-fit LR-X 2 for the base model of
the cross-classification in Table 2 is 498.81. For d f = 25,
this value indicates poor fit (p < 0.001). We reject the
base model and proceed to the CFA tests. The results of
these tests are given in Table 2. For illustration purposes,
we just interpret the two most extreme types and the two
most extreme antitypes, where ’extreme’ is based on the
magnitude of the z-statistic.
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Type 0 0: The most extreme type is one of stability of stay-
ing sober on corresponding days of the week. More often
than expected under the assumption of independence be-
tween the reports a week apart, Respondent 3004 reported
that he consumed no beer at all on two corresponding days
of the week. This pattern occurred 85 times, but the base
model led one to expect only 25.17 times.

Type 5 5: The second-most extreme type is one of sta-
bility of drinking excessively on corresponding days of the
week. More often than expected under the assumption of
independence between the reports a week apart, Respon-
dent 3004 reported consuming five beers or more on two
corresponding days of the week. This occurred 393 times
but had been expected to occur on only 286.64 days.

Antitype 5 0: The most extreme antitype suggests that
drinking excessively after having consumed nothing seven
days before is extremely unlikely. This pattern occurred
eight times, but had been expected to occur 84.56 times.

Antitype 0 5: This is the reverse pattern to Antitype 5
0. It suggests that drinking nothing after having consumed
excessively seven days before is extremely unlikely as well.
This pattern occurred nine times, but it had been expected
to occur 85.30 times.

From these results, we draw the conclusion that Respon-
dent 3004’s beer consumption behavior is very predictable
from one day to the same day, one week later. CFA results
suggest that patterns of heavy drinking, patterns of staying
sober, and patterns shifting from drinking to staying sober
and vice versa occur at extreme rates. However, not all
patterns deviate from expectancy. The number of extreme
patterns is, from a CFA perspective, not out of the ordinary.
The patterns that are well represented by the model of in-
dependence of drinking from one day to the corresponding
day of the following week suggest that, in most cells of the
table, there is independence. CFA tells the user where, in
the table, local associations exist.

There are many other questions than the one concerning
local associations. For example, one can ask whether there
are patterns of multiple types or patterns of multiple anti-
types for Respondent 3004. We will come back to this ques-
tion later, in this article. One could also ask whether this
respondent changes his drinking behavior over the course
of the 3.5 years that he provided data for. In the next sec-
tion, we focus on a third question, also within the context of
person-oriented research. This is the question concerning
the comparison of two respondents.

Comparing Two Individuals’ Lag Pat-
terns

In the last section, we illustrated that CFA can well be used
to identify longitudinal behavioral patterns for the individ-
ual (cf. von Eye et al., 2010; von Eye & Mun, 2012). In this
section, we illustrate that CFA can also be used to compare
individuals in such patterns. We present two approaches.
The first involves estimating the same base model for two
or more individuals, in separate runs, and then heuristically
compare the resulting type and antitype patterns. The sec-

ond approach involves performing a variant of 2-group CFA
to the comparison individuals.

These two approaches help answer different questions.
The first approach runs individual-specific CFAs. Results
indicate whether the comparison individuals’ behavior ex-
hibits local associations. These associations may or may not
exist, regardless of the patterns that describe the respec-
tive other individuals. The second approach answers the
question whether comparison individuals differ in particu-
lar configurations, regardless of whether this configuration
constitutes a type or antitype (or nothing) for one or both
of the individuals.

In this section, we illustrate both approaches. We begin
with the first. It simply involves running CFAs as illustrated
in the last section, for two or more individuals. For the
purpose of comparison, the base models, the test used for
the CFA hypotheses, and the protection of α in the multiple
CFA runs must be exactly the same.

Data Example. In this data example, we use data from
the same study as in the first example. We use data from
respondent 3000. As for Respondent 3004, we estimate the
base model of variable independence, use the z-test, and
apply the Holland-Copenhaver strategy of α-protection.
The results of this analysis appear in Table 3.

The overall goodness-of-fit LR-X 2 for the base model of
the cross-classification in Table 3 is 35.36. For d f = 25,
this value indicates solid fit (p = 0.08). We retain the base
model and see no point in proceeding to the CFA tests. In-
deed, the results in Table 3 suggest that not a single cell
constitutes a type or an antitype. The drinking habits of Re-
spondent 3000 are unpredictable when one compares cor-
responding days of the week.

This result and the one reported in Table 2 are in accor-
dance with the ones presented by von Eye and Bergman
(2003), for the same individuals. The authors had calcu-
lated autocorrelations for these two respondents, over a
wide range of lags. The results of that analysis suggested
that the two respondent differ in volume and predictability
of beer consumption.

The interpretation of the CFA results in Table 3, in com-
parison with those in Table 2, is straightforward. Whereas
Respondent 3004 is well predictable in a number of pat-
terns, Respondent 3000 shows no local associations at all,
for a lag of seven days. Note, however, that the present re-
sults may be specific to the chosen lag of one week. von Eye
and Bergman (2003) showed that, for lags that only cover
drinking patterns from one day to the next, Respondent
3000 is well predictable. The visual comparison of z-values
indicate where individual-specific local associations exist
(see Figure 1), and it becomes evident that such associa-
tions do exist for Respondent 3004 but not for Respondent
3000. In the next section, we discuss how to statistically
compare these two respondents with the aim of identifying
those lag patterns in which the two respondents differ.
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Table 3. First order CFA of beer consumption of Respondent 3000
with a lag of seven days.

Configuration
X t X t−7 m m̂ z p

0 0 176.00 156.927 1.5225 .063938
0 1 78.00 76.834 .1330 .447079
0 2 45.00 54.948 -1.3420 .089798
0 3 24.00 29.337 -.9853 .162246
0 5 11.00 13.038 -.5645 .286196
0 5 5.00 7.916 -1.0365 .149990
1 0 81.00 76.380 .5286 .298551
1 1 36.00 37.397 -.2284 .409652
1 2 22.00 26.745 -.9174 .179458
1 3 15.00 14.279 .1908 .424323
1 5 5.00 6.346 -.5344 .296544
1 5 6.00 3.853 1.0938 .137027
2 0 40.00 54.624 -1.9786 .023929
2 1 24.00 26.745 -.5307 .297814
2 2 29.00 19.126 2.2577 .011983
2 3 15.00 10.212 1.4985 .067005
2 4 7.00 4.538 1.1555 .123953
2 5 3.00 2.755 .1473 .441450
3 0 26.00 29.163 -.5858 .279008
3 1 15.00 14.279 .1908 .424323
3 2 10.00 10.212 -.0662 .473610
3 3 6.00 5.452 .2347 .407210
3 4 5.00 2.423 1.6555 .048916
3 5 1.00 1.471 -.3884 .348842
4 0 10.00 12.499 -.7068 .239859
4 1 6.00 6.120 -.0483 .480735
4 2 8.00 4.376 1.7322 .041623
4 3 2.00 2.337 -.2202 .412871
4 4 .00 1.038 -1.0190 .154090
4 5 1.00 .630 .4654 .320840
5 0 4.00 7.407 -1.2517 .105334
5 1 6.00 3.626 1.2465 .106299
5 2 4.00 2.593 .8734 .191212
5 3 1.00 1.385 -.3269 .371887
5 4 .00 .615 -.7845 .216384
5 5 1.00 .374 1.0247 .152742

Statistically Comparing Lag Patterns

In the simplest case, there is one additional variable in a
configural lag comparison, the variable that indicates the
comparison units. Let this variable be labeled P. Let the
two lag variables be labeled X t and X t−l . For these three
variables, the following base models are conceivable (again
excluding models with covariates or special effects, and
also excluding models that are as hard to interpret as the
second and the third, above):

1. log m= λ+ ε,

2. log m= λ+λX t +λX t−lλP + ε, and

3. log m= λ+λX t +λX t−l +λP +λX t ,X t−l .

It should be noted that many other log-linear mod-
els could be considered for these three variables, includ-

ing hierarchical, non-hierarchical, and nonstandard models
(Mair & von Eye, 2007). None of these, however, qualifies
as a CFA base model (cf. the criteria for CFA base models
listed above; von Eye, 2004). Therefore, we only discuss
these three models. The first of the three base models is, as
before, the null model. It allows one to answer the ques-
tion where, in the cross-classification of P, X t , and X t−l ,
observed frequencies deviate significantly from the grand
mean of frequencies. As in the first two examples, how-
ever, we focus on local associations.

Therefore, we are more interested in the second and the
third base models. The second is that of variable indepen-
dence. If it fails and types and antitypes emerge, we know
that local associations exist. These associations may rep-
resent different patterns for the comparison units. That is,
they can be respondent-specific. However, they do not al-
low us to answer the question concerning the differences
between the comparison units. To answer this question,
we need the third base model. It corresponds to that of
2-group CFA. It includes the association between the com-
parison variables. However, it posits that no qualification of
this association is needed that is related to the comparison
units. In other words, this model posits that the associa-
tion between the comparison variables is the same across
all comparison units.

If this model fails and types and antitypes emerge, there
is only one reason for their existence: Individual patterns
differ across the comparison units. This could have been
captured only by the three-way interaction among P, X t ,
and X t−l and the two two-way interactions P × X t and
P×X t−7. These terms are not part of the base model. They
were omitted for two reasons. First, including these terms
and specifying the base model such that it is hierarchical
would result in a saturated model. Here, we are not inter-
ested in this model because we focus on individual pairs
of cells (when there are two comparison units; when there
are more, the number of cells in each comparison increases;
see von Eye, 2002a). Second, finding that the three-way
interaction is significant will not allow one to answer the
CFA-specific question of where exactly in the space of the
three variables P, X t , and X t−l differences are located. This
question can be answered only with CFA.

In general, the model to be used for the comparison of
lagged information from two or more individuals contains
the following terms:

1. all main effects of all variables in the analysis;

2. all possible interactions among the variables used for
comparison; the model is, thus, saturated in the com-
parison variables;

3. all possible interactions among the variables used to
classify the comparison units; usually, there is only
one such variable; however, there are instances in
which more than classification variable is used (e.g.,
age, gender, and extraversion); in these instances, the
model is saturated in the classification variables as
well.

Including all these terms implies first that this base model
posits that the comparison variables are independent of the
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Figure 1. Comparison of Type/Antitype-configurations for the two individuals. The solid lines refer to the Bonferroni-adjusted critical
z-values.

comparison units. If this proposition fails, CFA allows one
to determine the patterns of the comparison variables in
which comparison units differ from each other. The sec-
ond implication is that any of the comparison variables and
any combination of comparison variables can be associated
with the classification variables. This issue will be taken
up again later, in this article. We now proceed to the real-
world data example.

Data Example. In the following example, we continue
the analysis of lagged drinking behavior patterns of respon-
dents 3000 and 3004. We estimate the above third base
model, which is, in the present example,

log m= λ+λX t +λX t−7 +λP +λX t ,X t−7

where P distinguishes between Respondents 3000 and
3004, and X t , and X t−l represent the original drinking
variables and the ones after invoking the shift operator
B(x t) = x t−7. For the CFA, we use, as in the first examples,
the z-approximation of the binomial test, and, to protect
α, we employ the Holland-Copenhaver procedure. Table 4
displays the results of the comparison of Respondents 3000
and 3004.

The overall goodness-of-fit LR-X 2 for the base model of
the cross-classification in Table 2 is 1014.16. For d f = 35,
this value indicates poor fit (p < 0.001). We reject the base
model and proceed to the CFA tests. The results of these
tests are given in Table 4.

Table 4 is structured so that the comparison pairs are
presented in one cell each. For example, in the first cell,
we compare Respondents 3000 and 3004 (labeled as 1 and
2) in Pattern 0 0. For each comparison, there is only one

test. This implies that the protected significance thresh-
old is less extreme than when each cell is subjected to a
CFA test. Therefore, 2-group CFA of lagged data has more
statistical power than the corresponding CFA that performs
one test per pair of observed and expected cell frequen-
cies. Table 4 shows nine discrimination types. This indi-
cates that Respondent 3000 differs from Respondent 3004
in nine lagged drinking patterns. To illustrate, we interpret
the two most extreme discrimination types, where ’extreme’
is, as above, based on the magnitude of the test statistic.

Discrimination Type 5 5 1 / 5 5 2: As shown in Table 2,
Pattern 5 5 constituted a lagged drinking type in the sep-
arate analysis of Respondent 3004. Here, we see that the
two respondents differ extremely in this pattern. Respon-
dent 3004 reported having consumed five or more beers
on corresponding days of consecutive weeks 393 times. In
contrast, Respondent 3000 reported this pattern only 10
times.

Discrimination Type 5 0 1 / 5 0 2: Pattern 5 0 also stood
out in the separate analysis of Respondent 3004. There, it
constituted an antitype. Here, we see that the two respon-
dents differ in this pattern as well. Whereas Respondent
3000 switched 218 times from drinking nothing to drink-
ing 5 or more beers on corresponding days of two weeks,
Respondent 3004 did this only nine times. It is interest-
ing to note that Pattern 0 5, which constituted an antitype
in the separate analysis of Respondent 3004 as well, does
not emerge as extreme in the present analysis. This pattern
occurs equally rarely for both respondents.

From the results in Table 4, we conclude that

• patterns that constitute types or antitypes in the sepa-
rate analysis of individuals do not necessarily also con-
stitute discrimination types in the comparison of indi-
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viduals; examples include Patterns 0 5, 5 2, and 5 3;

• patterns that fail to constitute types or antitypes in
the separate analysis of individuals, can constitute dis-
crimination types nevertheless; examples include Pat-
tern 4 5.

In sum, results from the separate analysis of individuals
are not predictive of results from the statistical comparison
of the same individuals. Reasons for this are (1) that the
base models for these two configural analyses take different
information into account, and (2) that the base models are
specified so that they speak to different questions.

Patterns of Patterns: Compound Patterns

Base models such as the one used for Table 4, that is,
log m= λ+λX t+λX t−7+λP+λX t ,X t−7 do not only allow one to
directly compare individuals but to also answer questions
concerning individual cells and groups of cells. In this sec-
tion, we discuss questions concerning groups of cells – also
a first in the context of CFA of lagged data. Specifically, one
can ask whether the cells in a selected group of cells jointly
stand out. If this question is answered in the affirmative,
these cells constitute a joint CFA type or a joint CFA anti-
type. When two or more individuals are compared, these
joint types/antitypes indicate where the comparison units
differ in the sense that the total number of observations in
the cells in a group of cells is significantly larger/smaller
than expected for one of the comparison units. This inter-
pretation results from the characteristics of the base model.
The only terms not included in the base model are the in-
teractions between the comparison variables and the com-
parison units. Therefore, if groups of cells stand out, these
interactions are the only possible causes.

A number of test statistics has been proposed that allow
one to test the null hypothesis that a group of cells jointly
has an occurrence rate that deviates from the expected
(cf. Darlington & Hayes, 2000; von Eye, 2002a). They all
take into account that the test statistics for individual cells,
e.g., X 2 values or z scores, cannot simply be averaged or
summed because the resulting scores would not approxi-
mate a known sampling distribution closely enough. Each
of these statistics can be used to test the present null hy-
pothesis. However, we consider Stouffer’s (Stouffer, Such-
man, DeVinney, Star, & Williams, 1949) Z-statistic as being
most suitable. The main reasons for this choice are (1) that
Stouffer’s Z is as powerful as the other statistics, and, more
important in the present context, (2) that it can be used for
one-sided testing. Z approximates the standard normal,
that is, a symmetrical distribution.

The statistic can be described by

Z =

 

∑

i

mi − N p̂i
q

N ˆpi q̂i

!

/
p

ncg =
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i zi

p

ncg

where i goes over the cells that constitute the group un-
der examination, ncg is the number of cells in the group, p

is estimated as m̂i
N , and q̂ = 1− p̂.

Table 4. 2-Group CFA for the comparison of beer consumption of
Respondents 3000 and 3004, with a lag of seven days (Respon-
dent 3000 labeled as 1, Respondent 3004 labeled as 2).

Configuration
X t X t−7 P m m̂ z p

0 0 1 64.00 74.14
0 0 2 85.00 74.86 -1.754 .039741

0 1 1 30.00 23.89
0 1 2 18.00 24.12 1.795 .036334

0 2 1 19.00 15.92
0 2 2 13.00 16.08 1.100 .135702

0 3 1 15.00 11.94
0 3 2 9.00 12.06 1.259 .104094

0 4 1 3.00 2.99
0 4 2 3.00 3.01 .012 .495315

0 5 1 2.00 4.98
0 5 2 8.00 5.02 -1.889 .029464

1 0 1 10.00 6.47
1 0 2 15.00 12.56 -.985 .162426

1 1 1 10.00 6.45
1 1 2 3.00 6.53 1.967 .024564

1 2 1 5.00 5.97
1 2 2 7.00 6.03 -.563 .286685

1 3 1 3.00 2.99
1 3 2 3.00 3.01 .012 .495315

1 4 1 1.00 0.50
1 4 2 .00 0.50 1.005 .157415

1 5 1 1.00 2.49
1 5 2 4.00 2.52 -1.333 .091227

2 0 1 16.00 15.92
2 0 2 16.00 16.08 .027 .489083

2 1 1 5.00 4.98
2 1 2 5.00 5.02 .015 .493943

2 2 1 6.00 3.48
2 2 2 1.00 3.52 1.907 .028256

2 3 1 4.00 2.99
2 3 2 2.00 3.01 .830 .203289

2 4 1 2.00 1.00
2 4 2 .00 1.01 1.422 .077518

2 5 1 1.00 6.47
2 5 2 12.00 6.53 -3.047 .001155 D

3 0 1 14.00 10.95
3 0 2 8.00 11.05 1.312 .094834

3 1 1 6.00 3.98
3 1 2 2.00 4.02 1.432 .076117

3 2 1 4.00 2.49
3 2 2 1.00 2.51 1.355 .087761

3 3 1 2.00 2.49
3 3 2 3.00 2.51 -.437 .330959
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Table 4. (continued)

Configuration
X t X t−7 P m m̂ z p

3 4 1 1.00 1.99
3 4 2 3.00 2.01 -.992 .160648

3 5 1 1.00 5.97
3 5 2 11.00 6.03 -2.882 .001976

4 0 1 17.00 9.95
4 0 2 3.00 10.05 3.174 .000753 D

4 1 1 13.00 6.47
4 1 2 .00 6.53 3.639 .000137 D

4 2 1 5.00 4.98
4 2 2 5.00 5.02 .015 .493943

4 3 1 3.00 2.49
4 3 2 2.00 2.51 .459 .323224

4 4 1 3.00 2.99
4 4 2 3.00 3.01 .012 .495315

4 5 1 1.00 14.93
4 5 2 29.00 15.07 -5.139 .000000 D

5 0 1 218.00 112.96
5 0 2 9.00 114.04 15.171 .000000 D

5 1 1 101.00 52.25
5 1 2 4.00 52.75 9.876 .000000 D

5 2 1 79.00 44.29
5 2 2 10.00 44.71 7.594 .000000 D

5 3 1 36.00 23.39
5 3 2 11.00 23.61 3.740 .000092 D

5 4 1 17.00 25.38
5 4 2 34.00 25.62 -2.388 .008463

5 5 1 10.00 200.54
5 5 2 393.00 202.46 -22.301 .000000 D

Note. D = Discrimination Type; Discrimination types result from
the comparison of the two frequencies in the same row pair,
relative to the total sample sizes for the comparison respondent.

Data Example. In the following data example, we con-
tinue the analysis of the data obtained from Respondents
3000 and 3004. The base model used for the comparison of
the predictability of beer drinking of these two respondents
via 2-group CFA of lagged data yields the expected cell fre-
quencies given in Table 5 (these are also the expected cell
frequencies that underlie the analyses for Table 4).

Table 5 does not display any tests for types or antitypes.
These would reflect the results from examining individual
cells. Here, we ask questions concerning groups of cells.
Specifically, we ask the following two questions:

1. Considering that Respondent 3000 drinks, on average,
less beer than Respondent 3004, is it more likely than
one would expect under the assumption that there
are no interindividual differences in the effects that
describe the data in Tables 4 and 5 that Respondent

3000, in comparison with Respondent 3004, exhibits,
on corresponding days of the week, drinking patterns
in which he combines drinking fewer beers before or
after he consumed large numbers of beers on the cor-
responding day the week before (or after)?

2. In turn, considering that Respondent 3004 drinks, on
average, more beer than Respondent 3000, is it partic-
ularly less likely than one would expect under the as-
sumption that there are no interindividual differences
in the effects that describe the data in Tables 4 and 5
that Respondent 3004 exhibits, on corresponding days
of the week, drinking patterns in which he combines
drinking fewer beers before or after he consumed large
numbers of beers on the corresponding day the week
before (or after)?

These two questions may sound similar. However, in the
first question we consider the drinking pattern of Respon-
dent 3000, relative to the drinking of Respondent 3004. In
contrast, in the second question, we consider the drinking
pattern of Respondent 3004, relative to the drinking of Re-
spondent 3000. These relations usually do not correspond.

The cells that speak to the first question are 1 5 0, 1 5 1,
1 5 2, 1 5 3, and 1 5 4 (see Table 5). The cells that speak
to the second question are 2 5 0, 2 5 1, 2 5 2, 2 5 3, and 2
5 4 (see also Table 5). Inserting into the formula for Z to
answer the first question, we obtain

Z = (9.884+6.744+5.216+2.608−1.663)/
p

5= 10.192.

This value is more extreme than compatible with the one-
sided 0.05 significance threshold of 1.645 (p < 0.01), and
we conclude that Respondent 3000 does indeed more of-
ten than expected return to drinking nothing after having
consumed at least one beer on the corresponding day of the
week before. The five configurations 1 5 0, 1 5 1, 1 5 2, 1
5 3, and 1 5 4 thus constitute a joint CFA type. This is in
contrast to Respondent 3004.

This statement can be formulated even more specifically
after answering the second question. Inserting into the for-
mula for Z to answer this question, we obtain

Z = (−9.836−6.712−5.191−2.596+1.655)/
p

5= −10.143,

a value that also exceeds the critical one-sided value for a
significance threshold of α= 0.05 (p < 0.01). We conclude
that it is not only more likely that Respondent 3000 returns
to drinking nothing from having consumed one or more
beers on the corresponding day the week before, it is also
less likely than expected that Respondent 3004 does the
same. The five configurations 2 5 0, 2 5 1, 2 5 2, 2 5 3, and
2 5 4 thus constitute a joint CFA antitype. Please note that,
in both cases, the hypotheses are one-sided. This was one
of the reasons why we selected Stouffer’s test.

Base Models and Interpretation of Joint Types and An-
titypes. In the last section, we discussed joint types and
antitypes for configural lag analysis of interindividual dif-
ferences in intraindividual change of drinking patterns. We
examined the interplay of the three variables P, X t , and
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X t−7 from a configural, person-oriented perspective. The
interpretation of the joint type and the joint antitype was
based on omitting all interactions from the base model that
would include Variable P. That is, we used the base model
log m = λ + λX t + λX t−7 + λP + λX t ,X t−7 . This base model
proposes that neither the original series nor the one that re-
sults from invoking the backshift operator B(x t−1) = x t−7 is
respondent-specific, and neither is the interaction between
the two series. There are three interactions that involve P.
These are the interactions [X t , P], [X t−7, P], and [X t , X t−7,
P]. Omitting all three of them is in line with the rules set
up for 2- or more-group CFA.

This decision, however, may be discussable, in the
present context. For example, it may be the case that [X t−7,
P] exists when [X t , P] also exists. Differences will solely be
due to the size of the lag because the second series, X t−7,
will be shorter than the first by a number of days that is
given by the size of the lag. Therefore, one of the interac-
tions may be redundant, given the other. Because of this
redundancy, the three-way interaction plus one of the two-
way interactions may be sufficient for the interpretation of
resulting joint types and joint antitypes. Specifically, and
extending the series of models considered by (von Eye &
Mun, 2012), four base models are conceivable:

1. Model 1: log m= λ+λX t +λX t−7 +λP +λX t ,X t−7 ; this is
the standard base model used in 2-group CFA, it was
used for the analyses in Tables 4 and 5; this model pro-
poses that the comparison respondents differ in their
original and lagged series of scores;

2. Model 2: log m= λ+λX t +λX t−7 +λP +λX t ,X t−7 +λX t ,P ;
this is the base model that searches for types and an-
titypes under the assumption that the first of the two
series is not specific to the comparison individuals; this
model considers the first of the two-way interactions
redundant;

3. Model 3: log m= λ+λX t+λX t−7+λP+λX t ,X t−7+λX t−7,P ;
this is the base model that searches for types and an-
titypes under the assumption that the second of the
two series is not specific to the comparison individu-
als; this model considers the second of the two-way
interactions redundant; and

4. Model 4: log m= λ+λX t +λX t−7+λP+λX t ,X t−7+λX t ,P+
λX t−7,P ; this is the model of all two-way interactions; it
is parallel to a logit model (for a comparison of logit
models and CFA, see von Eye, Mair, & Bogat, 2005); in
standard modeling, this model is of interest when one
assumes that the three-way interaction does not make
an important contribution to explaining the frequency
distribution in the cross-classification; from the per-
spective of a configural analysis of interindividual dif-
ferences in intraindividual change, however, this may
be the most important effect; this model suggests that
the two comparison respondents differ in the relation
between the original and lagged series of scores.

Indeed, estimating these four base models yields dif-
ferent goodness-of-fit results. Specifically, we obtain, for
Model 1, LR-X 2 = 1041.16 (d f = 35; p < 0.01), for Model

2, LR-X 2 = 1041.04 (d f = 30; p < 0.01), for Model 3, LR-
X 2 = 250.24 (d f = 30; p < 0.01), and for Model 4, LR-X 2

= 94.39 (d f = 25; p < 0.01). None of these models fits,
and one can expect types and antitypes to emerge. How-
ever, whereas the difference between the first two models
is minimal, the difference between the first and the third
is significant. We can conclude that the interaction [X t , P]
does make a strong contribution to the emergence of types
and antitypes. The difference between Models 1 and 4 is
significant as well. Considering that Model 4 is rejected, we
conclude that the three-way interaction does also play an
important role in the explanation of the frequency distribu-
tion in Table 4, and may be the main cause for discrimina-
tion types to emerge (for more detail on the comparison of
log-linear models, see (von Eye & Mun, 2013)).

Note that the model without the [X t , X t−7] is not a viable
option because this model would leave the door open for
types and antitypes to emerge because of the part of the
association between the two time series that is shared by
the comparison respondents. This is not desirable because
here, we are interested in interindividual differences, that
is types and antitypes that result from interactions with P.

Looking at the three two-way interactions in more detail,
we find the following Wald statistics (all estimated from
Model 4). For the [X t , P] interaction, we obtain a Wald
statistic of 130.20 (d f = 5; p < 0.01), for the [X t−7, P]
interaction, the value is 371.96 (d f = 5; p < 0.01), and for
the [X t , X t−7] interaction, the value is 249.31 (d f = 25;
p < 0.01). Evidently, none of these interactions is non-
significant, but the only one that cannot be removed from
the 2-group base model is the last, that is, [X t , X t−7], the
interaction between the comparison variables.

Table 5. Observed and expected cell frequencies for base model
log m= λ+λX t +λX t−7 +λP +λX t ,X t−7 where t indicates the obser-
vation point in time (same data as in Table 4; Respondent 3000
labeled as 1; Respondent 3004 labeled as 2).

Configuration
P X t X t−7 m m̂ z

1 0 0 64.00 74.144 -1.178
1 0 1 30.00 23.885 1.251
1 0 2 19.00 15.923 0.771
1 0 3 15.00 11.943 0.885
1 0 4 3.00 2.986 0.008
1 0 5 2.00 4.976 -1.334
1 1 0 10.00 12.440 -0.692
1 1 1 10.00 6.469 1.388
1 1 2 5.00 5.971 -0.397
1 1 3 3.00 2.986 0.008
1 1 4 1.00 0.498 0.712
1 1 5 1.00 2.488 -0.943
1 2 0 16.00 15.923 0.019
1 2 1 5.00 4.976 0.011
1 2 2 6.00 3.483 1.348
1 2 3 4.00 2.986 0.587
1 2 4 2.00 0.995 1.007
1 2 5 1.00 6.469 -2.150
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Table 5. (continued)

Configuration
P X t X t−7 m m̂ z

1 3 0 14.00 10.947 0.923
1 3 1 6.00 3.981 1.012
1 3 2 4.00 2.488 0.959
1 3 3 2.00 2.488 -0.309
1 3 4 1.00 1.990 -0.702
1 3 5 1.00 5.971 -2.034
1 4 0 17.00 9.952 2.234
1 4 1 13.00 6.469 2.568
1 4 2 5.00 4.976 0.011
1 4 3 3.00 2.488 0.325
1 4 4 3.00 2.986 0.008
1 4 5 1.00 14.928 -3.605
1 5 0 218.00 112.957 9.884
1 5 1 101.00 52.249 6.744
1 5 2 79.00 44.287 5.216
1 5 3 36.00 23.388 2.608
1 5 4 17.00 25.378 -1.663
1 5 5 10.00 200.536 -13.455
2 0 0 85.00 74.856 1.172
2 0 1 18.00 24.115 -1.245
2 0 2 13.00 16.077 -0.767
2 0 3 9.00 12.057 -0.880
2 0 4 3.00 3.014 -0.008
2 0 5 8.00 5.024 1.328
2 1 0 15.00 12.560 0.689
2 1 1 3.00 6.531 -1.382
2 1 2 7.00 6.029 0.396
2 1 3 3.00 3.014 -0.008
2 1 4 0.00 0.502 -0.709
2 1 5 4.00 2.512 0.939
2 2 0 16.00 16.077 -0.019
2 2 1 5.00 5.024 -0.011
2 2 2 1.00 3.517 -1.342
2 2 3 2.00 3.014 -0.584
2 2 4 0.00 1.005 -1.002
2 2 5 12.00 6.531 2.140
2 3 0 8.00 11.053 -0.918
2 3 1 2.00 4.019 -1.007
2 3 2 1.00 2.512 -0.954
2 3 3 3.00 2.512 0.308
2 3 4 3.00 2.010 0.699
2 3 5 11.00 6.029 2.025
2 4 0 3.00 10.048 -2.223
2 4 1 0.00 6.531 -2.556
2 4 2 5.00 5.024 -0.011
2 4 3 2.00 2.512 -0.323
2 4 4 3.00 3.014 -0.008
2 4 5 29.00 15.072 3.588
2 5 0 9.00 114.043 -9.836
2 5 1 4.00 52.751 -6.712
2 5 2 10.00 44.713 -5.191
2 5 3 11.00 23.612 -2.596
2 5 4 34.00 25.622 1.655
2 5 5 393.00 202.464 13.391

Discussion

In the following discussion, we first extend the models that
can be used for lag CFA. This is followed by a discussion of
questions that can be answered with lag CFA and a discus-
sion of statistical and design implications.

More Complex Models for Lag CFA

In this article, we extended the methods of lag CFA that
had been proposed by von Eye et al. (2010) and von Eye
and Mun (2012) in two domains. First, we proposed and
provided interpretation for more models than previously
considered. Second, we proposed considering groups of
cells that represent particular patterns of intraindividual
change. For the sake of simplicity and manageability of
data examples, we kept all models and examples basic in
the sense that we used the smallest possible number of vari-
ables. Naturally, more complex models are conceivable.

To give an example of such models, we now illustrate
how lag CFA can be combined with existing CFA models.
Specifically, we propose prediction lag CFA. This is an ap-
proach that combines prediction CFA, moderator CFA, lag
CFA, and multiple group CFA. Again for the sake of simplic-
ity, consider that there are just two series of scores, X t and
X t−l , one variable that indicates the comparison individu-
als, P, and one discrimination variable, D. For these three
variables, we consider the following five CFA base models.

1. log m̂= λ+λX
t +λ

X t−l +λP +λD;

2. log m̂= λ+λX
t +λ

X t−l +λP +λD +λX t X t−l ;

3. log m̂= λ+λX
t +λ

X t−l +λP +λD +λX t X t−l +λPD;

4. log m̂ = λ + λX
t + λ

X t−l + λP + λD + λX t X t−l + λX t P +
λX t−l P +λX t X t−l P ; and

5. log m̂ = λ + λX
t + λ

X t−l + λP + λD + λX t X t−l + λX t D +
λX t−l D +λX t X t−l D.

The first of these models is the standard base model of
first order CFA. This model is used to determine whether
there are types and antitypes at all. If they exist, one can
ask whether they are specific to the comparison individuals
or to categories of the discrimination variable. This ques-
tion can find a preliminary answer through the results of the
second model. If this model yields types and antitypes, they
can be caused by interactions of the series of observations
with the person-identifier, P, and the discrimination vari-
able, D, and the interaction between these two variables.
The second model, however, will not help answer the ques-
tion whether the interactions of the two series with D and
P are the only causes for the emergence of types and anti-
types. The model that includes the interaction between D
and P does answer this question. All it leaves out of the
base model are the interactions of the two series with the
person-identifier and the discrimination variable.
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Questions Answered by Lag CFA

Two additional questions concern the contributions made
by the person-identifier and the discrimination variable.
Base Model 4 includes the interactions among the series
and the person-identifier, P. Only interactions among the
two series and the discrimination variable are not part of
this model. If types and antitypes emerge, they must be
caused by these interactions. In other words, these types
and antitypes must be specific to categories of the discrimi-
nation variable. Similarly, Base Model 5 includes the inter-
actions among the series and the discrimination variable,
D. Only interactions among the two series and the person
identifier are not part of this model. If types and antitypes
emerge, they must be caused by these interactions. In other
words, these types and antitypes must be specific to indi-
viduals.

There are many other questions concerning the patterns
that can be found in lagged series. For example, one can
ask whether the lag types and lag antitypes are stable over
time. This can be of importance, for instance, when inter-
vention effects are studied, when the transition from one
developmental stage to the next is investigated, or when
custom tailored therapy programs are devised. When ques-
tions of this kind are considered, one can split series into
parts that cover the time periods (1) before the begin of an
intervention, (2) during the intervention, and (3) after the
intervention. Crossing the series that result from splitting,
allow one to test or explore hypotheses concerning tempo-
ral stability and change in lagged patterns.

It is important to realize that all these questions can also
be asked in the context of variable-oriented research. An-
swering these questions by applying standard methods of
lag analysis, time series analysis, or structural modeling
to aggregated raw data requires, however, strong assump-
tions. The two most important ones are that (1) relations
among variables hold across all categories or levels of these
variables (methods of, for example, piecewise regression
do exist, but they are rarely applied and, when they are ap-
plied, they usually operate in a variable-oriented research
context), and (2) the theorems of ergodicity apply. As Mole-
naar (2004; cf. Molenaar & Campbell, 2009) has shown,
these theorems apply only rarely, if ever. Therefore, appli-
cation of person-oriented analysis is de rigeur. The meth-
ods discussed and presented in this article are one step in
the development of methods that allow researchers to make
comparative statements about the development of individ-
uals.

Statistical and Design Implications

An important question often asked in the context of CFA
applications concerns statistical power. For CFA, the study
sample is distributed over the cells of the cross-classification
of the categorical variables of interest. This distribution is,
usually, rather non-uniform. By implication, some of the
cells that are subjected to CFA tests will contain no observed
cases or just a few. Other cells will contain larger numbers
of cases. Similarly, most CFA base models result in non-
uniform distributions of expected cell frequencies (only the

zero-order base model will always result in a uniform dis-
tribution of expected frequencies). The power of statisti-
cal tests to detect significant deviations from expectancy
will, therefore, vary with the numbers of observed and ex-
pected cases. This is exacerbated by application of the strict
CFA-specific rules of α protection. In all, large samples are
needed for CFA, in particular when multiple variables and
variables with many categories are cross-classified.

A second problem is that one would expect that types
are more readily detected than antitypes because the cell-
wise tests for types tend to have more power than the tests
for antitypes. This is to be expected because, in the typical
case, cells for which one anticipates antitypes contain fewer
cases than cells for which one anticipates types.

Fortunately, there are three developments that alleviate
these two problems. First, some of the tests that have been
proposed for use in CFA are particularly sensitive to anti-
types (von Eye, 2002b). These tests counterbalance, to a
degree, the disadvantage of smaller cell frequencies.

Second, modern methods of data collection make it
much more realistic than ever before to design studies
with many observation points. Examples of such meth-
ods include automated interview techniques, and studies
in which participants are asked via text messages to re-
spond to questions that then appear on the screens of
smartphones. These methods of data collection enable re-
searchers to collect series of observations that are as long
as the ones in the Perrine et al. study, in which some of the
respondents provided data from 800 daily interviews.

The third development, for the first time proposed by
von Eye et al. (2010) in the context of CFA, involves us-
ing fractional factorial designs in the analysis of categor-
ical data. In the present context, this type of design is
based on the Sparsity of Effects Principle (see Wu & Hamada,
2000). According to this principle, higher order effects
usually are so weak that they contribute little or nothing
to the explanation of the joint frequency distribution in a
cross-classification. This implies for CFA that tables and de-
signs that allow one to estimate higher order effects are
not needed for the detection of CFA types and antitypes.
Omitting these effects on the level of the design of a study
allows one to collect data in a way that is more parsi-
monious. Specifically, fractional designs allow researchers
to construct cross-classifications with fewer cells for more
variables, and the same types and antitypes will emerge as
for complete tables (if higher order effects are indeed not
needed for the detection of types and antitypes). For a com-
plete data example, see von Eye et al. (2010, Ch. 12).

Producing reduced, fractional, longitudinal designs
opens the door to addressing a key issue of person-oriented
research. This is the issue of describing individuals by pat-
terns of behavior or functioning instead of individual vari-
able scores. Automated data collection allows one to col-
lect very long time series of patterns, that is, of multivariate
descriptors of individuals. These patterns can then be sub-
jected to configural analysis. It can be asked, for example,
whether patterns in one behavioral domain, say personal-
ity, are related to patterns in a second behavioral domain,
say emotion, whether these relations change over time, and
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whether these changes are the same for individuals and
groups of individuals. These exciting options still need to
be specified and are topics for future work in the develop-
ment of statistical methods of analysis for person-oriented
research.
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