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Abstract: A good model of developmental phenomena should not only “explain” the data in the sense that the model is
not falsified by the data but it should also be built on the basic theoretical assumptions about the process under study.
This is often not the case when standard statistical models are applied to developmental data. An alternative is then to
apply nonlinear dynamical system modeling. This approach is followed in the article and it is illustrated by a provisional
model of the development of boys’ problem behavior between the ages 10 and 13. The underlying interactionistic theory
of development was mirrored in a nonlinear model that predicted outcomes marginally better than a standard regression
model. It is pointed out in the article that it might be possible to use nonlinear dynamic system modeling also in contexts
where data are available only from a few measurement occasions.
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Introduction

During the last decades, a discontent has grown among
many leading researchers within developmental science
(DS) concerning a mismatch between, on the one hand,
key tenets of many theoretical conceptualizations and, on
the other hand, common approaches taken in empirical re-
search to address scientific questions within the field of
DS. These researchers include, for instance, Robert Cairns,
Gilbert Gottlieb, and David Magnusson. Part of their dis-
content lies in that these common approaches do not al-
low the researchers to interpret their findings in relation
to modern DS theories, which emphasize dynamic interac-
tions and whole system properties (Bergman & Andersson,
2010; Bergman & Vargha, 2012).

From a methodological standpoint, standard current sta-
tistical methodological practices have also been criticized
for

1. Not taking into account whole system properties as re-

flected by patterns of functioning (Bergman & Mag-
nusson, 1997).

2. Producing findings that are only interpretable at a
group level, not at the individual level (Molenaar,
2004; Nesselroade & Ram, 2004).

Several researchers have pointed to the potential of
mathematical models for nonlinear dynamic systems (NO-
LIDS) as vehicles for carrying out research in DS. NOLIDS
match fundamental requirements of DS theoretical propo-
sitions in that they are process oriented and can accom-
modate nonlinearities, interactions, bi-directional causal-
ity, and change on a continuous scale. Properties of a suc-
cessful model are also interpretable in relation to typical DS
theoretical conceptualizations. NOLIDS has for a long time
been a mainstream methodological approach within the
natural sciences (weather prediction, prediction of number
of individuals of a certain species in an eco-environment,
etc.) and it is now making its way into developmental sci-
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ence (see, for instance, Boker, 2002; Granic & Hollenstein,
2006; Kelso, 2000).

Most commonly, NOLIDS is applied to time-series data in
an experimental context but such models are more widely
useful. In this article, an example of the use of a NOLIDS
model is given when data from only two time points are
analyzed; an unusual setting for such models1. It should be
pointed out that the NOLIDS model presented in this article
is assumed to be common for all individuals and that it may
or may not hold at the individual level (cf. point (2) above).
However, whole system properties are central in this type
of model and it allows for attractors to emerge (cf. point
(1) above).

Aims

The broad aim is to exemplify a NOLIDS approach to the
study of development within a DS framework where data
are available only from a few measurement occasions. Fur-
ther, model building and the search for a good model is dis-
cussed from a natural science perspective, offering a partly
different perspective on these issues to what is common
in the context of psychological research. NOLIDS is con-
trasted to a standard statistical modeling approach using
regression analysis and pros et cons of the two approaches
are discussed. To make the presentation more concrete, an
example is presented where empirical data of the develop-
ment of problem behaviors are analyzed, using both types
of modeling.

The NOLIDS model we present should be regarded as an
illustration of the possibilities of using this approach in DS.
It should not be regarded as giving a contribution to the
literature about understanding the development of boys’
problem behavior.

A Note on Dynamic Living Systems and Their
Modeling

In the following, a short introduction to some aspects of the
modeling of dynamic living systems is given as regarded
from a natural science perspective (for an overview from
a behavioral science perspective, see Granic & Hollenstein,
2006).

Systems in living organisms tend not to be successfully
modeled in the same way as most physical systems can
be modeled. For instance, different organisms can, under
the same conditions, be in different stable states (attractor
states) and identical initial states can lead to different later
states of the system. There also tend to exist both attractors
and instable states that are repellent. For this to happen,
and for the system to be flexible so as to adjust to a chang-
ing environment, processes that counteract each other must
be incorporated in the system. A system characterizing a
living organism is often in a meta stable state, meaning a
state that is attracted to a certain state but without that
state being a “true” attractor or stable state. This leads to

1This article is largely based on a B.A. thesis by Anton Grip (Grip, 2002)
and some of its findings have been discussed by Bergman and Vargha
(2012) in relation to the problem-method match.

that the system’s behavior is characterized by moving close
to some state but at the same time is free to move within
its neighbor region. The brain is one example of a system
in a meta stable state (Kelso, 2000). If the attractor states
were too strong, the brain network would be captured in a
collective stable state, leading to inflexibility. On the other
hand, without any weak attractors, the behavior of the net-
work would be uncoordinated, perhaps even chaotic. A sys-
tem being in an unstable state can be attracted to different
semi-stable states, depending on infinitely small variations
in the unstable initial state. This type of behavior is called
bifurcation (Boyce & DiPrima, 1997) and in this way self-
organizing systems of living organisms can achieve flexibil-
ity.

According to Kelso (2000), the following properties char-
acterize systems of living organisms and should be taken
into account when they are modeled:

• Synergy. The systems parts are connected to form
functional units, optimized to function together. This
might lead to that system behavior can be understood
in spite of an incomplete knowledge of all its parts.

• Multifunctionality. In a given situation, many types of
system behavior can be generated by the same parts of
the system.

• Stability. The ability to show the same system behavior
in many different situations.

• Function variance. The ability to achieve the same goal
by using different parts of the system in different ways.

• Flexibility. The ability to change system behavior to
meet new environmental demands. This can be looked
at as a selection mechanism (an optimization) that
chooses the simplest or most stable behavioral path
that leads to the goal.

Differential equations are almost always used in the
mathematical modeling of a dynamic system. The equa-
tions describe system change in continuous time and the
types of differential equations used in this article were de-
veloped already in the 18th century by Lagrange (see Boyce
& DiPrima, 1997). Using this approach, it is possible to
model most of the characteristics of a system that describes
a living organism. If stochastic components were added to
the model, this match could be further improved. However,
this is complicated and it was not attempted in this article:
the differential equations that are presented are determin-
istic.

Central to any modeling approach is the issue of what
constitutes a “good” model and how the best model can be
chosen from a set of possible models. This issue has, of
course, been much discussed in psychology and a number
of common procedures have emerged (for instance, focus-
ing on model fit or comparative model fit). However, in
the natural sciences, models are usually evaluated and se-
lected in different ways to what is common in psychology.
For instance, Peterson and Eberlein (1994) suggest the fol-
lowing criteria for deciding if a mathematical model of a
phenomenon is a good model:
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1. The extent to which the model mirrors the different
parts of the theory.

2. How well the model fits to data.

3. Whether the model behaves “reasonably” when
thought experiments are performed for extreme situa-
tions.

4. Whether the model allows for statements about situa-
tions that are far outside the data space observed.

5. Whether the model is sensitive to parameter changes.

Two additional criteria for a good model should be noted
(Casti, 1989):

6. The explanatory power of the model.

Explanation is then seen in contrast to mere description of
system behavior. In fact, Casti distinguishes between what
he calls a model of a system and a simulation of a system. A
simulation can only predict data while a model also to some
extent explains the studied phenomena and addresses the
question “why”. This implies model properties are inter-
pretable in terms of the theory-phenomena relationships.

7. Simplicity.

Any set of data can be perfectly described by a model that
is sufficiently complex but such a model is only a simula-
tor. A simpler and “real” model that has explanatory power
and can be generalized to hold for other data sets is often
preferable, although its predictive power is inferior to that
of a complex simulator.

For a more thorough discussion of what is a good model,
regarded from a philosophical perspective, it is referred to
Needham (2001).

An Empirical Example: Growth of Ad-
justment Problem Behavior

Theoretical Conceptualizations and Scientific
Problem

Within the longitudinal research program “Individual De-
velopment and Adaptation” (IDA; Magnusson, 1988), the
study of problem behavior, its development, and its roots,
has been an important research area. The IDA theoreti-
cal framework and empirical findings have also led to a
number of theoretical conceptualizations about the process
of adjustment problem development (Magnusson, 1988).
The broad theoretical framework has been the holistic-
interactionistic research paradigm and its formulation in
the person-oriented approach (Bergman & Magnusson,
1997). Hence, it is strongly DS-oriented. In the empiri-
cal example presented here, we are interested in one as-
pect of the study of adjustment problem behavior, namely
the growth of boys’ externalizing problems as regarded in
the context of linked internalizing problems. With the pur-
pose to demonstrate a NOLIDS model, a “mini system” was
defined consisting of boys’ externalizing problems and the

two internalizing adjustment problems distress and timid-
ity. This mini system was assumed to have the process prop-
erties previously described. Eight tentative specifications
of the system properties were made based on the IDA re-
search:

1. Distressed boys tend to have increased externalizing
problems.

2. Boys with externalizing problems tend to have prob-
lems with peer relations and to experience negative
feedback, which leads to increased distress.

3. Boys with pronounced externalizing problems easily
form bonds to other maladjusted boys, forming a sub
culture that is conductive to stabilization or even ag-
gravation of these problems. On the other hand, boys
with only weak tendencies to externalizing problems
will experience a pressure from their environment to
conform, which often leads to decreased externalizing
problems. This is an example of the problem gravita-
tion hypothesis as formulated by Bergman and Mag-
nusson (1997).

4. For boys without externalizing problems but who are
distressed, there is also, in contrast to point 1 above,
a tendency for self-healing.

5. A boy with extreme externalizing problems will
quickly become more distressed.

6. Timidity is largely time-invariant and is regarded as a
stable personality characteristic.

7. Boys who are very timid are highly responsive to crit-
icism, if they exhibit externalizing problem behavior,
which buffers against the growth of such problems.

8. Boys who are timid run the risk of developing in-
creased distress.

In the NOLIDS model described below, we strived to in-
corporate these eight specifications, as well as general pro-
cess properties of the type earlier described. The focus is
on understanding the growth of externalizing adjustment
problems as it evolves in the context of the two internaliz-
ing adjustment problems included in the mini system.

Sample and Variables

Longitudinal data were used about boys’ adjustment prob-
lems, measured by teachers’ ratings at age 10 and at age
13. Data were taken from IDA and only boys with complete
data were included in the study (n = 452). The following
teachers’ ratings were used:

• Aggression

• Motor restlessness

• Concentration difficulties

• Low school motivation

• Distress (feelings of unhappiness)
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• Timidity (shyness, inhibition)

All rating scales were originally graded 1 − 7 with “1” in-
dicating a complete absence of the problem being rated,
“4” indicating what is regarded by the teacher as a “nor-
mal” level of the problem, and “7” indicating an extreme
presence of it. The rating scales were transformed to better
reflect the degree of “real” problems, i.e. problems beyond
what is the norm for children (see Table 1). Previous stud-
ies within IDA indicate that the first four teachers’ ratings
presented above can be regarded as belonging to the same
factor, labeled Externalizing problems. Hence, for simplic-
ity, in this study, instead of these four teachers’ ratings, we
used only the average of them (based on the transformed
ratings).

Table 1. Transformation of ratings used in this article.

original ratings transformed ratings

1-4 0
5 1
6 2
7 3

To summarize: Three scales were included in the analy-
ses, namely Externalizing problems (E), Distress (D), and
Timidity (T). Each was measured at age 10 and again at
age 13, hence six variables were analyzed. When neces-
sary, the age at the time of measurement was added after
the letter indicating the scale to specify the variable (e.g.
E10 is Externalizing problems measured at age 10).

The Linear Model

The linear model we first used was a simple multiple re-
gression model (MRA model) for predicting Externalizing
problems at age 13, using the three adjustment problems
measured at age 10 as predictors:

E13 = A+ BE10 + C D10 + DT10 (1)

To make the linear model somewhat more comparable
to the NOLIDS model described below, a more elaborated
regression model was also fitted to the data. Starting from
Model (1), a regression analysis was performed to inves-
tigate whether the regression model’s predictive power is
increased when nonlinear terms are added to the equation.
Six terms were included in a stepwise analysis: The square
of each of the three adjustment problems at age 10 and
the three centered interaction terms between each pair of
adjustment problems at age 10. To a very limited extent,
these terms also relate to some of the theoretical expecta-
tions of the system properties (e.g. the square of E10 relates
to Specification 3).

The NOLIDS Model

Based on the eight tenets about the developmental process
of problem behavior that were described above, a NOLIDS
model was constructed. One standard model was chosen

that reasonably well fitted the tenets. The model was de-
fined by the following set of differential equations (Bold =
variable):

dE
d t
= −D(D − ( f + iT))(D − 3)

− aE(E − (b+ iT))(E − 3) (2)

dD
d t
= −E(E − (g − iT))(E − 3)

− hD
�

3− E
3

�2

+ h
�

3− D
3

�

E2 (3)

dT
d t
= 0 (4)

where the constants a− i are parameters to be estimated by
fitting the model to data. The parameters were constrained
to have positive values.

It is possible that the model generates values for
Externalizing problems or Distress outside the range 0−3.
Such a value is set to the closest extreme value (i.e. 0 or
3).

Description of the differential equations:

−D(D − ( f + iT))(D − 3) :

The first of the two terms in Equation (2) reflects Point
1 from the theory (1. Distressed boys tend to have in-
creased externalizing problems). If Distress is larger than
f + i∗Timidity, the whole factor will be positive, contribut-
ing to higher externalizing problems.

−aE(E − (b+ iT))(E − 3) :

The second term in Equation (2) corresponds to Point 3
from the theory (3. Boys with pronounced externalizing
problems easily form bonds to other maladjusted boys,
forming a sub culture that is conductive to stabilization or
even aggravation of these problems. On the other hand,
boys with only weak tendencies to externalizing problems
will experience a pressure from their environment to con-
form, which often leads to decreased externalizing prob-
lems.). In similarity to the terms described above, it is
also a third degree polynomial that is negative for val-
ues of Externalizing problems less than b+ i∗Timidity and
positive for values of Externalizing problems larger than
b + i∗Timidity. It contributes to that boys with externaliz-
ing problems will have even larger such problems but those
with less externalizing problems will have decreased prob-
lems. Hence, this term describes problem gravitation.

−E(E − (g − iT))(E − 3) :

The first term in Equation (3) is of the same type as the
one described above and it corresponds to Point 2 from the
theory. (2. Boys with externalizing problems tend to have
problems with peer relations and to experience negative
feedback, which leads to increased distress.) It contributes
to an increased distress if the boy has externalizing prob-
lems larger than g − i∗Timidity.

−hD
�

3− E
3

�2

:
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The middle term in Equation (3) corresponds to Point 4
from the theory (4. For boys without externalizing prob-
lems but who are distressed, there is also, in contrast to
point 1 above, a tendency for self-healing.). It contributes
to a decrease in Distress if the externalizing problems are
small.

h
�

3− D
3

�

E2 :

The last term in Equation (3) corresponds to Point 5 from
the theory (5. A boy with extreme externalizing problems
will quickly become more distressed). It contributes to an
increased Distress if Externalizing problems are large.

dT
d t
= 0 :

Equation (4) corresponds to Point 6 from the theory (6.
Timidity is largely time-invariant and is regarded as a stable
personality characteristic). That T:s time derivative is zero
means that Timidity is regarded as a stable characteristic
that is not time dependent.

Point 7 from the theory (7. Boys who are very timid are
highly responsive to criticism, if they exhibit externalizing
problem behavior, which buffers against the growth of such
problems) is represented in the model by its flexibility in
changing factor contributions in the equations timidity are
part of. This means that the value is changed for when
the term switches from being negative to positive. An ex-
ample: The second term in Equation (2) describes problem
gravitation in Externalizing problems. The tipping point for
having increased or decreased values is determined by the
term −(b+ i∗Timidity) where b and i are constants that are
adjusted for maximum model fit. If Timidity is large, this
tipping point will be large, i.e. externalizing problems must
initially be present for them to grow. On the other hand, if
T = 0 the tipping point is at a lower level of Externalizing
problems. In this way, boys characterized by a high degree
of Timidity will be subjected to a protective effect against
developing pronounced Externalizing problems.

Point 8 from the theory (8. Boys who are timid run the
risk of developing increased distress) corresponds to the
term −(g − i∗Timidity) in Equation (3). If a boy is high
in Timidity he will tend to have increased Distress for low
levels of Externalizing problems.

Description of the constants: The constants f , b, and g
decide how easily a boys moves against extreme maladjust-
ment or good adjustment. For Timidity= 0 we have:

f : If Distress is smaller than f , Externalizing problems
tends to decrease, otherwise Externalizing problems
tends to increase.

b: Externalizing problems larger than b lead to
Externalizing problems, otherwise Externalizing
problems decrease. b therefore represents the tipping
point where externalizing problems are large enough
to create problem gravitation to even larger problems.
Further analyses could be done to determine the value
of b.

g: Larger Externalizing problems than g lead to that
Distress increases, otherwise Distress will decrease.

Further:

i: A larger i gives more weight to the importance of
Timidity for problem development.

a: A larger a gives larger importance to problem gravi-
tation. This is something different than b, which was
just the tipping point at which problems gravitate to
worse or where you can expect self-healing.

h: The strength of self-healing for distressed boys and the
strength of increase in distress for those with low dis-
tress but who have high externalizing problems.

Results

First, the MRA model described in Equation (1) above was
fitted to the data to predict Externalizing problems at age
13 from the three adjustment problems measured at age
10. The estimated model was:

E13 = 1.29+ 0.56E10 + 0.28D10 − 0.29T10

with R = 0.57 and R2 = 0.32. Almost all predictive power
is due to E10, and if only that variable is included as a
predictor, R = 0.56. Adding nonlinear terms using step-
wise regression analysis increased the predictive power to
R2 = 0.34. The square of D10 was then the only nonlin-
ear term that significantly improved the prediction and the
negative sign of its partial regression coefficient might in-
dicate a protective effect of high distress against growing
externalizing problems. In an unclear way, this runs con-
trary to the theoretical Point 1 but it might be compatible
to Point 4.

Then the NOLIDS model indicated by Equations (2), (3),
and (4) was fitted to data which gave the estimated pa-
rameter values presented in Table 2. The parameters of the
model were estimated using the MATLAB computer pack-
age. The estimates are given with only an accuracy of one
decimal point to avoid over interpreting the precision of the
estimated model (because the parameters were estimated
by a crude procedure in which one parameter at a time was
optimized with regard to the model’s predictive power of
Externalizing problems at age 13).

To illustrate the behavior of the NOLIDS model, Figure 1
is presented. It is a phase portrait of the momentary change
in Externalizing problems and Distress according to the es-
timated NOLIDS model when Timidity= 1 (i.e. there is a
tendency to a problem with regard to timidity). The ar-
rows indicate the movement in time of Externalizing prob-
lems and Distress. For instance, two attractor regions are
seen, namely the upper right part of the figure, indicating a

Table 2. Parameter estimates for the NOLIDS model.

Parameter f b g i a h
Estimated value 0.6 0.7 0.8 0.2 0.1 0.3
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Figure 1. Phase portrait of the change in Externalizing problems and Distress according to the estimated NOLIDS model when Timidity=
1. The arrows indicate the movement in time.

region characterized by both large Externalizing problems
and Distress, where the movement in time is towards in-
creased problems and, second, an attractor region in the
lower left part of the figure, where the movements in time
is towards decreased Externalizing problems.

To concentrate on the most important part of the model,
consider Equation (2):

dE
d t
= −D(D − (0.6+ 0.2T))(D − 3)

− 0.1E(E − (0.7+ 0.2T))(E − 3)

The dominant feature of Equation (2) is that, when Distress
and Externalizing problems are not small, Externalizing
problems will tend to increase over time. When they
are both small, Externalizing problems will decrease.
When Timidity= 0, tipping points are Distress= 0.6 and
Externalizing problems= 0.7 and when Timidity= 2, tip-
ping points are Distress= 1 and Externalizing problems=
1.1. Hence, the problem gravitation hypothesis earlier de-
scribed (Point 3 above) is supported with tipping points
at surprisingly low levels of Externalizing problems. The
strength of the problem gravitation is, however, not large,
as indicated by the small estimated parameter value of a.

The NOLIDS model’s fit to data was studied by generat-
ing predictions of Externalizing problems at age 13 from
the start values in the three adjustment problems at age 10
and then computing the correlation between the predicted
and actual values. This correlation was 0.58 (R2 = 0.34).
Hence, the predictive power is marginally higher than that
of the simple regression model and almost identical to that

of the more elaborated regression model.

Discussion

The NOLIDS model we presented was rather well aligned
to the DS theory behind the scientific problem under study
and the model addressed most of the hypotheses that were
formed of the developmental process of the adjustment
problems under study. Further, the properties of the esti-
mated model could be interpreted in theoretically mean-
ingful ways. The fit to data of the model was modest, as
measured by the correlation between actual and model-
predicted externalizing problems at age 13. However, the
prediction was at least as good as that that produced by any
of two standard linear regression models, and if a more
a more ambitious optimization procedure of the NOLIDS
model had been performed the prediction would have im-
proved further. A useful property of the NOLIDS model is
that its affinity to the DS theory makes it easy to modify the
model in ways that make theoretical sense and that are not
just based on improving statistical model fit.

As pointed out in the introduction, the NOLIDS model
we presented should only be regarded as an illustrative ex-
ample, pointing to the possibilities offered by this type of
approach, also in situations with only a small number of
measurement occasions. Despite its nice properties, the
estimated NOLIDS model should not be considered a real
model of the phenomena in Casti’s sense, i.e. it may not be
a model that contributes to our understanding of the devel-
opment of boys’ problem behavior. There are three reasons
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for this:

• A more elaborate theoretical background than pre-
sented here would be necessary to more fully reflect
key theoretical conceptualization and to allow for a
more precise specification of the model.

• The model construction and optimization of the esti-
mated model parameters were done rather simplisti-
cally.

• The information content of the data set was insuffi-
cient for more stringent tests of model fit.

Consider now the NOLIDS model and the MRA Model (1)
with regard to the criteria for a good model that were pre-
viously described. In many criteria, the NOLIDS model
stands out as the best one, especially with regard to

• criterion (1), the degree to which the model mirrors
the theory

• criterion (4), the model allows for predictions outside
the observed data space

• criterion (6), the explanatory power of the model

Only in criterion (7), the simplicity of the model, the linear
model is preferable because of its simple structure and that
it contains only four parameters, as compared to six param-
eters in the NOLIDS model. It should be pointed out that
when we replaced our simple MRA model with a more elab-
orated regression model that included nonlinear terms, the
results of this comparison were only marginally changed;
the major change being that the simplicity advantage of the
linear model was lost.

There are a number of ways a NOLIDS model could be
further developed. First, consider criterion (2) of a good
model, i.e. how well the model fits to data. How “fit”
should be best measured is far from a simple question. For
instance, standard methods for measuring fit within the
structural equation modeling tradition have limitations in
that many fit measures are based on the similarity between
the predicted and actual variance-covariance matrix, i.e.
not based on the similarity between predicted and actual
data. Given start values, a NOLIDS model can estimate val-
ues simultaneously in all variables before and after the time
point of the start values. This means that, if the data set is
rich, a very stringent test of model fit can be achieved by
comparing all these predicted values to actual values. A
measure of concordance can be computed and a correla-
tion coefficient is then an obvious candidate, although, de-
pending on the context, better alternatives can be found.
For an example of a more sophisticated method of mea-
suring model fit, often used in chemistry, the reader is re-
ferred to Edsberg (1991). However, maximizing a model’s
fit to a data set is normally a complex, nonlinear optimiza-
tion problem, and there is no guarantee the best solution
is found (Nash & Sofer, 1996). A special problem occurs
when model fit is to be compared between a standard lin-
ear regression model and a NOLIDS model. A crude “solu-
tion” is then to ignore the NOLIDS models ability to predict
all variables simultaneously and, as we did in this article,

just predict the outcome values in a single variable to ob-
tain a comparison between predicted and actual values that
conforms to what the linear model produces.

A NOLIDS model can be improved by introducing
stochastic components that takes into account measure-
ment errors and stochastic development of the variables,
like in models used for weather prediction. Such a model
tends to be complicated and was not used in this article.
This clearly is a limitation of our type of model, consider-
ing that substantive errors of measurement are present in
most areas in psychology. However, it is not a problem for
the data we analyzed because the reliabilities of the teach-
ers’ ratings can be assumed to be very high (certainly above
0.90). Using NOLIDS in future studies in contexts similar
to ours but where the reliabilities of the involved variables
are in the normal range (say, 0.60 − 0.80) would make it
necessary to use a model that can handle errors of measure-
ment.

As was previously pointed out, NOLIDS models are com-
ing into use in psychology but then mostly in experimen-
tal contexts with very many measurement occasions and
less frequently within a DS context. We believe our article
has contributed to pointing out the possibility of using such
models also in contexts when data only from a few mea-
surement occasions are available (see also Boker, 2002).
However, considering NOLIDS models potential to better
match fundamental theoretical conceptualizations within
DS, it is surprising that they are not more used in a DS
context. Of course, many problems arise in the implemen-
tation of such models. The technique is difficult and for
long-term developmental studies a critical issue is the pos-
sible lack of system invariance over the time period studied.
In such studies the researcher might have to consider partly
different systems operating during different time periods.
If individual development is at focus, it can also be neces-
sary to construct (partly) different models for different in-
dividuals. In the present example, data from only two time
points were used and with a three-year gap between mea-
surements. This is, of course, sub optimal in that possible
“nonlinear” movements of system states during these three
years are lost and in that the data contain less rich infor-
mation, decreasing the power of rejecting a “false” model.

We end with a strong plea made long ago by Aage
Sörensen, an eminent sociologist:

The failure to consider mechanisms of change and try
to formulate them in models of the processes we inves-
tigate, however primitive the results may be, has im-
portant consequences for the state of sociological re-
search. The almost universal use of statistical models
and specifications has two sets of important implica-
tions. First, we are constrained by the statistical meth-
ods to not consider whether or not we actually obtain,
from our research, a greater understanding of the pro-
cesses we investigate. In other words, the statistical
models give us theoretical blinders. . . . Second, we may
actually produce results that, on closer consideration,
seem theoretically unfounded and very likely mislead-
ing. (Sörensen, 1998, pp. 14–15).
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